Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Redox Biol ; 70: 103033, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38211440

RESUMO

Most anticancer treatments act on oxidative-stress pathways by producing reactive oxygen species (ROS) to kill cancer cells, commonly resulting in consequential drug-induced systemic cytotoxicity. Physical activity (PA) has arisen as an integrative cancer therapy, having positive health effects, including in redox-homeostasis. Here, we investigated the impact of an online supervised PA program on promoter-specific DNA methylation, and corresponding gene expression/activity, in 3 antioxidants- (SOD1, SOD2, and CAT) and 3 breast cancer (BC)-related genes (BRCA1, L3MBTL1 and RASSF1A) in a population-based sample of women diagnosed with primary BC, undergoing medical treatment. We further examined mechanisms involved in methylating and demethylating pathways, predicted biological pathways and interactions of exercise-modulated molecules, and the functional relevance of modulated antioxidant markers on parameters related to aerobic capacity/endurance, physical fatigue and quality of life (QoL). PA maintained levels of SOD activity in blood plasma, and at the cellular level significantly increased SOD2 mRNA (≈+77 %), contrary to their depletion due to medical treatment. This change was inversely correlated with DNA methylation in SOD2 promoter (≈-20 %). Similarly, we found a significant effect of PA only on L3MBTL1 promoter methylation (≈-25 %), which was inversely correlated with its mRNA (≈+43 %). Finally, PA increased TET1 mRNA levels (≈+15 %) and decreased expression of DNMT3B mRNA (≈-28 %). Our results suggest that PA-modulated DNA methylation affects several signalling pathways/biological activities involved in the cellular oxidative stress response, chromatin organization/regulation, antioxidant activity and DNA/protein binding. These changes may positively impact clinical outcomes and improve the response to cancer treatment in post-surgery BC patients.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/cirurgia , Qualidade de Vida , Estudos Longitudinais , Metilação de DNA , Exercício Físico , Oxirredução , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Progressão da Doença , RNA Mensageiro/metabolismo , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética
2.
Life (Basel) ; 11(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34440585

RESUMO

Chronic kidney disease (CKD) represents a world-wide public health problem. Inflammation, endothelial dysfunction (ED) and vascular calcifications are clinical features of CKD patients that increase cardiovascular (CV) mortality. CKD-related CV disease pathogenic mechanisms are not only associated with traditional factors such as arterial hypertension and dyslipidemia, but also with ED, oxidative stress and low-grade inflammation. The typical comorbidities of CKD contribute to reduce the performance and the levels of the physical activity in nephropathic patients compared to healthy subjects. Currently, the effective role of physical activity on ED is still debated, but the available few literature data suggest its positive contribution. Another possible adjuvant treatment of ED in CKD patients is represented by natural bioactive compounds (NBCs). Among these, minor polar compounds of extra virgin olive oil (hydroxytyrosol, tyrosol and oleocanthal), polyphenols, and vitamin D seem to exert a beneficial role on ED in CKD patients. The objective of the review is to evaluate the effectiveness of physical exercise protocols and/or NBCs on ED in CKD patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA