Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 124: 155272, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181530

RESUMO

BACKGROUND: Alzheimer's diseases (AD) and dementia are among the highly prevalent neurological disorders characterized by deposition of beta amyloid (Aß) plaques, dense deposits of highly phosphorylated tau proteins, insufficiency of acetylcholine (ACh) and imbalance in glutamatergic system. Patients typically experience cognitive, behavioral alterations and are unable to perform their routine activities. Evidence also suggests that inflammatory processes including excessive microglia activation, high expression of inflammatory cytokines and release of free radicals. Thus, targeting inflammatory pathways beside other targets might be the key factors to control- disease symptoms and progression. PURPOSE: This review is aimed to highlight the mechanisms and pathways involved in the neuroprotective potentials of lead phytochemicals. Further to provide updates regarding challenges associated with their use and their progress into clinical trials as potential lead compounds. METHODS: Most recent scientific literature on pre-clinical and clinical data published in quality journals especially on the lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin was collected using SciFinder, PubMed, Google Scholar, Web of Science, JSTOR, EBSCO, Scopus and other related web sources. RESULTS: Literature review indicated that the drug discovery against AD is insufficient and only few drugs are clinically approved which have limited efficacy. Among the therapeutic options, natural products have got tremendous attraction owing to their molecular diversity, their safety and efficacy. Research suggest that natural products can delay the disease onset, reduce its progression and regenerate the damage via their anti-amyloid, anti-inflammatory and antioxidant potentials. These agents regulate the pathways involved in the release of neurotrophins which are implicated in neuronal survival and function. Highly potential lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin regulate neuroprotective signaling pathways implicated in neurotrophins-mediated activation of tropomyosin receptor kinase (Trk) and p75 neurotrophins receptor (p75NTR) family receptors. CONCLUSIONS: Phytochemicals especially phenolic compounds were identified as highly potential molecules which ameliorate oxidative stress induced neurodegeneration, reduce Aß load and inhibit vital enzymes. Yet their clinical efficacy and bioavailability are the major challenges which need further interventions for more effective therapeutic outcomes.


Assuntos
Doença de Alzheimer , Produtos Biológicos , Curcumina , Fármacos Neuroprotetores , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Resveratrol/farmacologia , Curcumina/farmacologia , Quercetina/farmacologia , Apigenina/farmacologia , Genisteína/farmacologia , Peptídeos beta-Amiloides/metabolismo , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Produtos Biológicos/farmacologia , Transdução de Sinais , Fatores de Crescimento Neural/metabolismo , Compostos Fitoquímicos/uso terapêutico , Fármacos Neuroprotetores/química
2.
Oxid Med Cell Longev ; 2023: 1327562, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215366

RESUMO

Infertility and obstetric complications have become global health issues in the past few years. Infertility is defined as the inability of a couple to conceive even after twelve months or more of regular and unprotected intercourse. According to WHO data published in the year 2020, 186 million people have infertility globally. Factors leading to infertility are variable in both males and females. But some common factors include smoking, alcohol consumption, obesity, and stress. Various synthetic drugs and treatment options are available that are effective in treating infertility, but their prolonged usage produces various unwanted adverse effects like hot flashes, mood swings, headaches, and weight gain. In extreme cases, these may also lead to the development of anxiety and depression. Herbal remedies have gained a lot of popularity over the years, and people's inclination toward them has increased all over the world. The prime reason is that these show significant therapeutic efficacy and have fewer side effects. The therapeutic efficacy of plants can be attributed to the presence of diverse phytochemical classes of constituents like alkaloids, flavonoids, and volatile oils. These secondary metabolites, or phytomolecules, can be used to develop herbal formulations. The review highlights the applications and mechanisms of action of various phytochemicals for treating infertility. Also, it focuses on the various future prospects associated with it.


Assuntos
Alcaloides , Infertilidade , Masculino , Gravidez , Feminino , Humanos , Infertilidade/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico
3.
Oxid Med Cell Longev ; 2022: 3914408, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148411

RESUMO

Cisplatin induced vomiting involves multiple mechanisms in its genesis and a single antiemetic agent do not cover both the phases (acute & delayed) of vomiting in clinics; necessitating the use of antiemetics in combination. Cannabis sativa and other selected plants have ethnopharmacological significance in relieving emesis. The aim of the present study was to investigate the intrinsic antiemetic profile of Cannabis sativa (CS), Bacopa monniera (BM, family Scrophulariaceae), and Zingiber officinale (ZO, family Zingiberaceae) in combinations against vomiting induced by highly emetogenic anticancer drug-cisplatin in pigeons. We have analysed the neurotransmitters which trigger the vomiting response centrally and peripherally. Electrochemical detector (ECD) was used for the quantification of neurotransmitters and their respective metabolites by high performance liquid chromatography in the brain stem (BS) and area postrema (AP) while peripherally in the small intestine. Cisplatin (7 mg/kg i.v.) induced reliable vomiting throughout the observation period (24 hrs). CS-HexFr (10 mg) + BM-MetFr (10 mg)-Combination 1, BM-ButFr (5 mg) + ZO-ActFr (25 mg)-Combination 2, ZO-ActFr (25 mg) + CS-HexFr (10 mg)-Combination 3, and CS-HexFr (10 mg) + BM-ButFr (5 mg)-Combination 4; provided ~30% (30 ± 1.1), 70% (12 ± 0.4; P < 0.01), 60% (19 ± 0.2; P < 0.05) and 90% (05 ± 0.1; P < 0.001) protection, respectively, against cisplatin induced vomiting as compared to cisplatin control. Standard MCP (30 mg) provided ~50% (23 ± 0.3) protection (P > 0.05). CS Hexane fraction (10 mg/kg), BM methanolic (10 mg/kg) and bacoside rich n-butanol fraction (5 mg/kg) and ZO acetone fraction (25 mg/kg) alone provided ~62%, 36%, 71%, and 44% protection, respectively, as compared to cisplatin control. The most effective and synergistic combination 4 was found to reduce 5HT and 5HIAA (P < 0.05-0.001) in all the brain areas area postrema (AP)+brain stem (BS) and intestine at the 3rd hour of cisplatin administration. In continuation, at the 18th of cisplatin administration reduction in dopamine (P < 0.001) in the AP and 5HT in the brain stem and intestine (P < 0.001) was observed. The said combination did not change the neurotransmitters basal levels and their respective metabolites any significantly. In conclusion, all the tested combinations offered protection against cisplatin induced vomiting to variable degrees, where combination 4 provided enhanced attenuation by antiserotonergic mechanism at the 3rd hour while a blended antidopaminergic and antiserotonergic mechanism at the 18th hour after cisplatin administration.


Assuntos
Antieméticos , Antineoplásicos , 1-Butanol/efeitos adversos , Acetona , Animais , Antieméticos/efeitos adversos , Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Columbidae , Dexametasona/efeitos adversos , Dopamina/efeitos adversos , Hexanos , Neurotransmissores , Vômito/induzido quimicamente , Vômito/tratamento farmacológico , Vômito/prevenção & controle
4.
Bioinorg Chem Appl ; 2022: 3994340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979184

RESUMO

Dengue is a growing mosquito-borne viral disease prevalent in 128 countries, while 3.9 billion people are at high risk of acquiring the infection. With no specific treatment available, the only way to mitigate the risk of dengue infection is through controlling of vector, i.e., Aedes aegypti. Nanotechnology-based prevention strategies like biopesticides with nanoformulation are now getting popular for preventing dengue fever. Metal nanoparticles (NPs) synthesized by an eco-friendly process, through extracts of medicinal plants have indicated potential anti-dengue applications. Green synthesis of metal NPs is simple, cost-effective, and devoid of hazardous wastes. The recent progress in the phyto-synthesized multifunctional metal NPs for anti-dengue applications has encouraged us to review the available literature and mechanistic aspects of the dengue control using green-synthesized NPs. Furthermore, the molecular bases of the viral inhibition through NPs and the nontarget impacts or hazards with reference to the environmental integrity are discussed in depth. Till date, major focus has been on green synthesis of silver and gold NPs, which need further extension to other innovative composite nanomaterials. Further detailed mechanistic studies are required to critically evaluate the mechanistic insights during the synthesis of the biogenic NPs. Likewise, detailed analysis of the toxicological aspects of NPs and their long-term impact in the environment should be critically assessed.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35096118

RESUMO

OBJECTIVE: Medicinal plants and essentials oils are well known for diverse biological activities including antidiabetic potential. This study was designed to isolate essential oils from the leaves of Persicaria hydropiper L. (P. hydropiper), perform its phytochemical analysis, and explore its in vitro antidiabetic effects. MATERIALS AND METHODS: P. hydropiper leaves essential oils (Ph.Los) were extracted using a hydrodistillation apparatus and were subjected to phytochemical analysis using the gas chromatography mass spectrometry (GC-MS) technique. Ph.Lo was tested against two vital enzymes including α-glucosidase and α-amylase which are important targets in type-2 diabetes. The identified compounds were tested using in silico approaches for their binding affinities against the enzyme targets using MOE-Dock software. RESULTS: GC-MS analysis revealed the presence of 141 compounds among which dihydro-alpha-ionone, cis-geranylacetone, α-bulnesene, nerolidol, ß-caryophyllene epoxide, and decahydronaphthalene were the most abundant compounds. Ph.Lo exhibited considerable inhibitory potential against α-glucosidase enzyme with 70% inhibition at 1000 µg mL-1 which was the highest tested concentration. The inhibitory activity of positive control acarbose was 77.30 ± 0.61% at the same tested concentration. Ph.Lo and acarbose exhibited IC50 of 170 and 18 µg mL-1 correspondingly. Furthermore, dose-dependent inhibitions were observed for Ph.Lo against α-amylase enzyme with an IC50 of 890 µg mL-1. The top-ranked docking conformation was observed for ß-caryophyllene epoxide with a docking score of -8.3182 against α-glucosidase, and it has established seven hydrogen bonds and one H-pi interaction at the active site residues (Phe 177, Glu 276, Arg 312, Asp 349, Gln 350, Asp 408, and Arg 439). Majority of the identified compounds fit well in the binding pocket of Tyr 62, Asp 197, Glu 233, Asp 300, His 305, and Ala 307 active residues of α-amylase. ß-Caryophyllene epoxide was found to be the most active inhibitor with a docking score of -8.3050 and formed five hydrogen bonds at the active site residues of α-amylase. Asp 197, Glu 233, and Asp 300 active residues were observed to be making polar interactions with the ligand. CONCLUSIONS: The current study revealed that Ph.Lo is rich in bioactive metabolites which might contribute to its enzyme inhibitory potential. Inhibition of these enzymes is the key target in reducing postprandial hyperglycemia. However, further detailed in vivo studies are required for their biological and therapeutic activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA