Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotheranostics ; 8(3): 344-379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577318

RESUMO

Modern medicine relies on a small number of key biologics, which can be found in nature but require further characterization and purification before they can be used. Since the herbal remedy is given through a dated and ineffective method of drug administration, its effectiveness is diminished. The novel form of medicine delivery has the potential to increase the effectiveness of herbal substances while decreasing their side effects. This is the main idea behind utilising different ways of drug delivery in herbal treatments. Several benefits arise from novel formulations of herbal compounds as compared to their conventional counterparts. These include enhanced penetrating ability into tissues, constant delivery of effective doses, and resistance to physical and chemical degradation. Controlled and targeted delivery that include herbal components allow for more traditional dosing while simultaneously increasing their efficacy. Enhancing the biodistribution and target site accumulation of systemically administered herbal medicines is the goal of nanomedicine formulations. The field of nanotheranostics has made significant advancements in the development of herbal compounds by combining diagnostic and therapeutic functions on a single nanoscale platform. It is critically important to create a theranostic nanoplatform that is derived from plants and is intrinsically "all-in-one" for single molecules. In addition to examining the mechanistic approach to nanoparticle synthesis, this review highlights the therapeutic effects of nanoscale phytochemical delivery systems. Furthermore, we have evaluated the scope for future advancements in this field, discussed several nanoparticles that have been developed recently for herbal imaging, and provided experimental evidence that supports their usage.


Assuntos
Sistemas de Liberação de Medicamentos , Medicina de Precisão , Distribuição Tecidual , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Nanotecnologia
2.
Nanotheranostics ; 8(2): 127-149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328614

RESUMO

Cardiovascular disease is one of the chief factors that cause ischemic stroke, myocardial infarction, and venous thromboembolism. The elements that speed up thrombosis include nutritional consumption, physical activity, and oxidative stress. Even though the precise etiology and pathophysiology remain difficult topics that primarily rely on traditional medicine. The diagnosis and management of thrombosis are being developed using discrete non-invasive and non-surgical approaches. One of the emerging promising approach is ultrasound and photoacoustic imaging. The advancement of nanomedicines offers concentrated therapy and diagnosis, imparting efficacy and fewer side effects which is more significant than conventional medicine. This study addresses the potential of nanomedicines as theranostic agents for the treatment of thrombosis. In this article, we describe the factors that lead to thrombosis and its consequences, as well as summarize the findings of studies on thrombus formation in preclinical and clinical models and also provide insights on nanoparticles for thrombus imaging and therapy.


Assuntos
Nanopartículas , Trombose , Humanos , Medicina de Precisão , Trombose/diagnóstico por imagem , Trombose/terapia , Ultrassonografia/métodos , Nanopartículas/uso terapêutico
3.
Nanomedicine (Lond) ; 3(3): 305-19, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18510426

RESUMO

AIM: The aim of this work was to develop extended-release risperidone nanoparticles for parenteral delivery (intravenous) and to reduce the dose-dependent extrapyramidal side effects of risperidone. METHODS: Polymeric nanoparticles containing risperidone made of poly (epsilon-caprolactone) were designed by the nanoprecipitation method using polymeric stabilizers (poloxamers). The in vivo efficacy of prepared formulations and the risperidone solution was studied by administering them intravenously to apomorphine-treated mice. Extrapyramidal side effects of the risperidone and its formulations were also studied. RESULTS: The particle size of the prepared nanoparticles ranged between 99 and 304 nm. Approximately 78-85% drug-encapsulation efficiency was achieved when risperidone was loaded at 1.7-4.1% by weight of the polymer. During in vivo studies, prepared risperidone-containing formulations showed a significant prolonged antipsychotic effect than that of risperidone solution, also having less extrapyramidal side effects. CONCLUSION: The prolonged effect of risperidone was obtained from the nanoparticles of risperidone administered by the intravenous route and this may improve the treatment of psychotic disorders by dose reduction.


Assuntos
Comportamento Animal/efeitos dos fármacos , Portadores de Fármacos/química , Nanopartículas/química , Poliésteres/química , Risperidona/administração & dosagem , Risperidona/química , Implantes Absorvíveis , Animais , Difusão , Composição de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos , Injeções Intravenosas , Camundongos , Nanopartículas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA