Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol Rep ; 5(3): 444-52, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23905166

RESUMO

Removal of selenium from groundwater was documented during injection of acetate into a uranium-contaminated aquifer near Rifle, Colorado (USA). Bioreduction of aqueous selenium to its elemental form (Se0) concentrated it within mineralized biofilms affixed to tubing used to circulate acetate-amended groundwater. Scanning and transmission electron microscopy revealed close association between Se0 precipitates and cell surfaces, with Se0 aggregates having a diameter of 50-60 nm. Accumulation of Se0 within biofilms occurred over a three-week interval at a rate of c. 9 mg Se0 m(-2) tubing day(-1). Removal was inferred to result from the activity of a mixed microbial community within the biofilms capable of coupling acetate oxidation to the reduction of oxygen, nitrate and selenate. Phylogenetic analysis of the biofilm revealed a community dominated by strains of Dechloromonas sp. and Thauera sp., with isolates exhibiting genetic similarity to the latter known to reduce selenate to Se0. Enrichment cultures of selenate-respiring microorganisms were readily established using Rifle site groundwater and acetate, with cultures dominated by strains closely related to D. aromatica (96-99% similarity). Predominance of Dechloromonas sp. in recovered biofilms and enrichments suggests this microorganism may play a role in the removal of selenium oxyanions present in Se-impacted groundwaters and sediments.


Assuntos
Betaproteobacteria/metabolismo , RNA Ribossômico 16S/genética , Selênio/metabolismo , Thauera/metabolismo , Urânio/metabolismo , Poluentes Químicos da Água/metabolismo , Acetatos/metabolismo , Betaproteobacteria/classificação , Betaproteobacteria/genética , Biodegradação Ambiental , Biofilmes/crescimento & desenvolvimento , Colorado , Água Subterrânea/química , Água Subterrânea/microbiologia , Humanos , Consórcios Microbianos/fisiologia , Oxirredução , Oxigênio/metabolismo , Filogenia , RNA Ribossômico 16S/classificação , Ácido Selênico , Compostos de Selênio/metabolismo , Thauera/classificação , Thauera/genética
2.
FEMS Microbiol Ecol ; 81(1): 188-204, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22432531

RESUMO

There is increasing interest in harnessing the functional capacities of indigenous microbial communities to transform and remediate a wide range of environmental contaminants. Information about which community members respond to stimulation can guide the interpretation and development of remediation approaches. To comprehensively determine community membership and abundance patterns among a suite of samples associated with uranium bioremediation experiments, we employed a high-density microarray (PhyloChip). Samples were unstimulated, naturally reducing, or collected during Fe(III) (early) and sulfate reduction (late biostimulation) from an acetate re-amended/amended aquifer in Rifle, Colorado, and from laboratory experiments using field-collected materials. Deep community sampling with PhyloChip identified hundreds-to-thousands of operational taxonomic units (OTUs) present during amendment, and revealed close similarity among highly enriched taxa from drill core and groundwater well-deployed column sediment. Overall, phylogenetic data suggested that stimulated community membership was most affected by a carryover effect between annual stimulation events. Nevertheless, OTUs within the Fe(III)- and sulfate-reducing lineages, Desulfuromonadales and Desulfobacterales, were repeatedly stimulated. Less consistent, co-enriched taxa represented additional lineages associated with Fe(III) and sulfate reduction (e.g. Desulfovibrionales; Syntrophobacterales; Peptococcaceae) and autotrophic sulfur oxidation (Sulfurovum; Campylobacterales). Data implies complex membership among highly stimulated taxa and, by inference, biogeochemical responses to acetate, a nonfermentable substrate.


Assuntos
Acetatos/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Água Subterrânea/microbiologia , Urânio/metabolismo , Poluentes Radioativos da Água/metabolismo , Bactérias/genética , Biodegradação Ambiental , Biodiversidade , Colorado , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Compostos Férricos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Filogenia , Enxofre/metabolismo
3.
ISME J ; 4(2): 253-66, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20010635

RESUMO

Nutrient limitation is an environmental stress that may reduce the effectiveness of bioremediation strategies, especially when the contaminants are organic compounds or when organic compounds are added to promote microbial activities such as metal reduction. Genes indicative of phosphate-limitation were identified by microarray analysis of chemostat cultures of Geobacter sulfureducens. This analysis revealed that genes in the pst-pho operon, which is associated with a high-affinity phosphate uptake system in other microorganisms, had significantly higher transcript abundance under phosphate-limiting conditions, with the genes pstB and phoU upregulated the most. Quantitative PCR analysis of pstB and phoU transcript levels in G. sulfurreducens grown in chemostats demonstrated that the expression of these genes increased when phosphate was removed from the culture medium. Transcripts of pstB and phoU within the subsurface Geobacter species predominating during an in situ uranium-bioremediation field experiment were more abundant than in chemostat cultures of G. sulfurreducens that were not limited for phosphate. Addition of phosphate to incubations of subsurface sediments did not stimulate dissimilatory metal reduction. The added phosphate was rapidly adsorbed onto the sediments. The results demonstrate that Geobacter species can effectively reduce U(VI) even when experiencing suboptimal phosphate concentrations and that increasing phosphate availability with phosphate additions is difficult to achieve because of the high reactivity of this compound. This transcript-based approach developed for diagnosing phosphate limitation should be applicable to assessing the potential need for additional phosphate in other bioremediation processes.


Assuntos
Água Doce/microbiologia , Geobacter/genética , Geobacter/metabolismo , Fosfatos/metabolismo , Urânio/metabolismo , Poluentes da Água/metabolismo , Biodegradação Ambiental , Água Doce/química , Regulação Bacteriana da Expressão Gênica , Geobacter/crescimento & desenvolvimento
4.
Appl Environ Microbiol ; 75(20): 6591-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19717633

RESUMO

Implementation of uranium bioremediation requires methods for monitoring the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here, we report a proteomics-based approach for simultaneously documenting the strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO, aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching liquid chromatography-tandem mass spectrometry spectra to peptides predicted from seven isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and Geobacter bemidjiensis-like strains and later possible emergence of M21 and G. bemidjiensis-like strains more closely related to Geobacter lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-coenzyme A and pyruvate for central metabolism, while abundant peptides matching tricarboxylic acid cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics-independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.


Assuntos
Geobacter/genética , Geobacter/fisiologia , Urânio/metabolismo , Poluentes Radioativos da Água/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Genômica , Geobacter/classificação , Geobacter/isolamento & purificação , Dados de Sequência Molecular , Oxirredução , Mapeamento de Peptídeos , Plâncton/classificação , Plâncton/genética , Plâncton/isolamento & purificação , Plâncton/fisiologia , Proteômica , Microbiologia da Água
5.
Environ Sci Technol ; 43(12): 4386-92, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19603651

RESUMO

The influence of ammonium availability on bacterial community structure and the physiological status of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by 2 orders of magnitude (< 4 to 400 microM) across th study site. Analysis of 16S rRNA sequences suggested that ammonium may have been one factor influencing the community composition prior to acetate amendment with Rhodoferax species predominating over Geobacter species with higher ammonium and Dechloromonas species dominating at the site with lowest ammonium. However, once acetate was added and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to acetate concentrations rather than ammonium levels. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium transporter gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during uranium reduction. The abundance of amtB was inversely correlated to ammonium levels, whereas nifD transcript levels were similar across all sites examined. These results suggest that nifD and amtB expression are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB transcript expression appears to be a useful approach for monitoring the nitrogen-related physiological status of subsurface Geobacter species. This study also emphasizes the need for more detailed analysis of geochemical and physiological interactions at the field scale in order to adequately model subsurface microbial processes during bioremediation.


Assuntos
Proteínas de Transporte/metabolismo , Geobacter/metabolismo , Fixação de Nitrogênio/fisiologia , Compostos de Amônio Quaternário/química , Urânio/química , Proteínas de Transporte/genética , DNA Bacteriano/metabolismo , Recuperação e Remediação Ambiental/métodos , Regulação Bacteriana da Expressão Gênica , Biblioteca Gênica , Geobacter/genética , Fixação de Nitrogênio/genética , Compostos de Amônio Quaternário/metabolismo , Fatores de Tempo , Água/química , Poluentes Radioativos da Água/química
6.
Environ Sci Technol ; 42(8): 2999-3004, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18497157

RESUMO

Previous field studies on in situ bioremediation of uranium-contaminated groundwater in an aquifer in Rifle, Colorado identified two distinct phases following the addition of acetate to stimulate microbial respiration. In phase I, Geobacter species are the predominant organisms, Fe(III) is reduced, and microbial reduction of soluble U(VI) to insoluble U(IV) removes uranium from the groundwater. In phase II, Fe(III) is depleted, sulfate is reduced, and sulfate-reducing bacteria predominate. Long-term monitoring revealed an unexpected third phase during which U(VI) removal continues even after acetate additions are stopped. All three of these phases were successfully reproduced in flow-through sediment columns. When sediments from the third phase were heat sterilized, the capacity for U(VI) removal was lost. In the live sediments U(VI) removed from the groundwater was recovered as U(VI) in the sediments. This contrasts to the recovery of U(IV) in sediments resulting from the reduction of U(VI) to U(IV) during the Fe(III) reduction phase in acetate-amended sediments. Analysis of 16S rRNA gene sequences in the sediments in which U(VI) was being adsorbed indicated that members of the Firmicutes were the predominant organisms whereas no Firmicutes sequences were detected in background sediments which did not have the capacity to sorb U(VI), suggesting that the U(VI) adsorption might be due to the presence of these living organisms or at least their intact cell components. This unexpected enhanced adsorption of U(VI) onto sediments following the stimulation of microbial growth in the subsurface may potentially enhance the cost effectiveness of in situ uranium bioremediation.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Urânio/química , Poluentes Radioativos da Água/química , Abastecimento de Água , Acetatos/metabolismo , Adsorção , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Colorado , Sedimentos Geológicos/química , Oxirredução , RNA Ribossômico 16S/genética , Sulfatos/metabolismo
7.
Environ Microbiol ; 10(5): 1218-30, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18279349

RESUMO

Limitations on the availability of Fe(III) as an electron acceptor are thought to play an important role in restricting the growth and activity of Geobacter species during bioremediation of contaminated subsurface environments, but the possibility that these organisms might also be limited in the subsurface by the availability of iron for assimilatory purposes was not previously considered because copious quantities of Fe(II) are produced as the result of Fe(III) reduction. Analysis of multiple Geobacteraceae genomes revealed the presence of a three-gene cluster consisting of homologues of two iron-dependent regulators, fur and dtxR (ideR), separated by a homologue of feoB, which encodes an Fe(II) uptake protein. This cluster appears to be conserved among members of the Geobacteraceae and was detected in several environments. Expression of the fur-feoB-ideR cluster decreased as Fe(II) concentrations increased in chemostat cultures. The number of Geobacteraceae feoB transcripts in groundwater samples from a site undergoing in situ uranium bioremediation was relatively high until the concentration of dissolved Fe(II) increased near the end of the field experiment. These results suggest that, because much of the Fe(II) is sequestered in solid phases, Geobacter species, which have a high requirement for iron for iron-sulfur proteins, may be limited by the amount of iron available for assimilatory purposes. These results demonstrate the ability of transcript analysis to reveal previously unsuspected aspects of the in situ physiology of microorganisms in subsurface environments.


Assuntos
Proteínas de Bactérias/metabolismo , Água Doce/microbiologia , Regulação Bacteriana da Expressão Gênica , Geobacter/metabolismo , Ferro/metabolismo , Urânio/metabolismo , Proteínas de Bactérias/genética , Biodegradação Ambiental , Meios de Cultura , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Geobacter/genética , Geobacter/crescimento & desenvolvimento , Família Multigênica , Filogenia , Reação em Cadeia da Polimerase , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Contaminação Radioativa da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA