Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 627(8003): 295-300, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383784

RESUMO

The ability to detect single photons has led to the advancement of numerous research fields1-11. Although various types of single-photon detector have been developed12, because of two main factors-that is, (1) the need for operating at cryogenic temperature13,14 and (2) the incompatibility with complementary metal-oxide-semiconductor (CMOS) fabrication processes15,16-so far, to our knowledge, only Si-based single-photon avalanche diode (SPAD)17,18 has gained mainstream success and has been used in consumer electronics. With the growing demand to shift the operation wavelength from near-infrared to short-wavelength infrared (SWIR) for better safety and performance19-21, an alternative solution is required because Si has negligible optical absorption for wavelengths beyond 1 µm. Here we report a CMOS-compatible, high-performing germanium-silicon SPAD operated at room temperature, featuring a noise-equivalent power improvement over the previous Ge-based SPADs22-28 by 2-3.5 orders of magnitude. Key parameters such as dark count rate, single-photon detection probability at 1,310 nm, timing jitter, after-pulsing characteristic time and after-pulsing probability are, respectively, measured as 19 kHz µm-2, 12%, 188 ps, ~90 ns and <1%, with a low breakdown voltage of 10.26 V and a small excess bias of 0.75 V. Three-dimensional point-cloud images are captured with direct time-of-flight technique as proof of concept. This work paves the way towards using single-photon-sensitive SWIR sensors, imagers and photonic integrated circuits in everyday life.

2.
Sci Rep ; 3: 3225, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24232956

RESUMO

A novel technique using surface tension to locally bond germanium (Ge) on silicon (Si) is presented for fabricating high performance Ge/Si photodiodes. Surface tension is a cohesive force among liquid molecules that tends to bring contiguous objects in contact to maintain a minimum surface energy. We take advantage of this phenomenon to fabricate a heterojunction optoelectronic device where the lattice constants of joined semiconductors are different. A high-speed Ge/Si heterojunction waveguide photodiode is presented by microbonding a beam-shaped Ge, first grown by rapid-melt-growth (RMG) method, on top of a Si waveguide via surface tension. Excellent device performances such as an operating bandwidth of 17 GHz and a responsivity of 0.66 and 0.70 A/W at the reverse bias of -4 and -6 V, respectively, are demonstrated. This technique can be simply implemented via modern complementary metal-oxide-semiconductor (CMOS) fabrication technologies for integrating Ge on Si devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA