Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 168: 272-278, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33309661

RESUMO

SARS-CoV-2is the causative agent for the ongoing COVID19 pandemic, and this virus belongs to the Coronaviridae family. The nsp14 protein of SARS-CoV-2 houses a 3' to 5' exoribonuclease activity responsible for removing mismatches that arise during genome duplication. A homology model of nsp10-nsp14 complex was used to carry out in silico screening to identify molecules among natural products, or FDA approved drugs that can potentially inhibit the activity of nsp14. This exercise showed that ritonavir might bind to the exoribonuclease active site of the nsp14 protein. A model of the SARS-CoV-2-nsp10-nsp14 complex bound to substrate RNA showed that the ritonavir binding site overlaps with that of the 3' nucleotide of substrate RNA. A comparison of the calculated energies of binding for RNA and ritonavir suggested that the drug may bind to the active site of nsp14 with significant affinity. It is, therefore, possible that ritonavir may prevent association with substrate RNA and thus inhibit the exoribonuclease activity of nsp14. Overall, our computational studies suggest that ritonavir may serve as an effective inhibitor of the nsp14 protein. nsp14 is known to attenuate the inhibitory effect of drugs that function through premature termination of viral genome replication. Hence, ritonavir may potentiate the therapeutic properties of drugs such as remdesivir, favipiravir and ribavirin.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Exorribonucleases/antagonistas & inibidores , Ritonavir/farmacologia , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Sequência de Aminoácidos , Antivirais/administração & dosagem , Antivirais/química , COVID-19/virologia , Domínio Catalítico , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada , Exorribonucleases/química , Exorribonucleases/genética , Genoma Viral/efeitos dos fármacos , Humanos , Simulação de Dinâmica Molecular , Pandemias , Ritonavir/administração & dosagem , Ritonavir/química , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral/efeitos dos fármacos
2.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 2): 47-57, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32039885

RESUMO

The structure of the MP-4 protein was previously determined at a resolution of 2.8 Å. Owing to the unavailability of gene-sequence information at the time, the side-chain assignment was carried out on the basis of a partial sequence available through Edman degradation, sequence homology to orthologs and electron density. The structure of MP-4 has now been determined at a higher resolution (2.22 Å) in another space group and all of the structural inferences that were presented in the previous report of the structure were validated. In addition, the present data allowed an improved assignment of side chains and enabled further analysis of the MP-4 structure, and the accuracy of the assignment was confirmed by the recently available gene sequence. The study reinforces the traditional concept that conservative interpretations of relatively low-resolution structures remain correct even with the availability of high-resolution data.


Assuntos
Mucuna/metabolismo , Extratos Vegetais/metabolismo , Proteínas de Plantas/química , Conformação Proteica , Sementes/química , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Homologia de Sequência
3.
Biochem J ; 475(19): 3057-3071, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30181145

RESUMO

Proteins belonging to cupin superfamily are known to have critical and diverse physiological functions. However, 7S globulins family, which is also a part of cupin superfamily, were undermined as only seed storage proteins. Structure determination of native protein - Vic_CAPAN from Capsicum annuum - was carried out, and its physiological functions were explored after purifying the protein by ammonium sulfate precipitation followed by size exclusion chromatography. The crystal structure of vicilin determined at 2.16 Šresolution revealed two monomers per asymmetric unit which are juxtaposed orthogonal with each other. Vic_CAPAN consists predominately of ß-sheets that folds to form a ß-barrel structure commonly called cupin fold. Each monomer of Vic_CAPAN consists of two cupin fold domains, N-terminal and C-terminal, which accommodate two different ligands. A bound ligand was identified at the C-terminal cupin fold in the site presumably conserved for metabolites in the crystal structure. The ligand was confirmed to be salicylic acid through mass spectrometric analysis. A copper-binding site was further observed near the conserved ligand-binding pocket, suggesting possible superoxide dismutase activity of Vic_CAPAN which was subsequently confirmed biochemically. Vicilins from other sources did not exhibit this activity indicating functional specificity of Vic_CAPAN. Discovery of bound salicylic acid, which is a known regulator of antioxidant pathway, and revelation of superoxide dismutase activity suggest that Vic_CAPAN has an important role during oxidative stress. As salicylic acid changes the redox state of cell, it may act as a downstream signal for various pathways involved in plant biotic and abiotic stress rescue.


Assuntos
Capsicum , Estresse Oxidativo/fisiologia , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Proteínas de Armazenamento de Sementes/química , Proteínas de Armazenamento de Sementes/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Cristalização , Extratos Vegetais/genética , Estrutura Secundária de Proteína , Proteínas de Armazenamento de Sementes/genética , Sementes
4.
J Biol Chem ; 291(21): 11373-84, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-26987900

RESUMO

Mortality due to snakebite is a serious public health problem, and available therapeutics are known to induce debilitating side effects. Traditional medicine suggests that seeds of Mucuna pruriens can provide protection against the effects of snakebite. Our aim is to identify the protein(s) that may be important for snake venom neutralization and elucidate its mechanism of action. To this end, we have identified and purified a protein from M. pruriens, which we have named MP-4. The full-length polypeptide sequence of MP-4 was obtained through N-terminal sequencing of peptide fragments. Sequence analysis suggested that the protein may belong to the Kunitz-type protease inhibitor family and therefore may potentially neutralize the proteases present in snake venom. Using various structural and biochemical tools coupled with in vivo assays, we are able to show that MP-4 does not afford direct protection against snake venom because it is actually a poor inhibitor of serine proteases. Further experiments showed that antibodies generated against MP-4 cross-react with the whole venom and provide protection to mice against Echis carinatus snake venom. This study shows that the MP-4 contributes significantly to the snake venom neutralization activity of M. pruriens seeds through an indirect antibody-mediated mechanism.


Assuntos
Mucuna , Proteínas de Plantas/farmacologia , Venenos de Serpentes/antagonistas & inibidores , Venenos de Serpentes/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/biossíntese , Cristalografia por Raios X , Feminino , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Dados de Sequência Molecular , Mucuna/química , Mucuna/genética , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Plantas Medicinais , Sementes/química , Sementes/genética , Mordeduras de Serpentes/imunologia , Mordeduras de Serpentes/terapia , Venenos de Víboras/antagonistas & inibidores , Venenos de Víboras/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA