Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e24822, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317994

RESUMO

Mesenchymal stromal/stem cells (MSCs) are considered to be a promising immunotherapeutic tool due to their easy accessibility, culture expansion possibilities, safety profile, and immunomodulatory properties. Although several studies have demonstrated the therapeutic effects of MSCs, their efficacy needs to be improved while also preserving their safety. It has been suggested that cell homeostasis may be particularly sensitive to plant extracts. The impact of natural compounds on immunity is thus a fascinating and growing field. Ptychotis verticillata and its bioactive molecules, carvacrol and thymol, are potential candidates for improving MSC therapeutic effects. They can be used as immunotherapeutic agents to regulate MSC functions and behavior during immunomodulation. Depending on their concentrations and incubation time, these compounds strengthened the immunomodulatory functions of MSCs while maintaining their immune-evasive profile. Incubating MSCs with carvacrol and thymol does not alter their hypoimmunogenicity, as no induction of the allogeneic immune response was observed. MSCs also showed enhanced abilities to reduce the proliferation of activated T cells. Thus, MSCs are immunologically responsive to bioactive molecules derived from PV. The bioactivity may depend on the whole phyto-complex of the oil. These findings may contribute to the development of safe and efficient immunotherapeutic MSCs by using medicinal plant-derived active molecules.

2.
Stem Cells Int ; 2022: 1850305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132168

RESUMO

Background: A growing number of hepatocellular carcinoma (HCC), and recurrence frequency recently have drawn researchers' attention to alternative approaches. The concept of differentiation therapies (DT) relies on inducing differentiation in HCC cells in order to inhibit recurrence and metastasis. Hepatocyte nuclear factor 4 alpha (HNF4α) is the key hepatogenesis transcription factor and its upregulation may decrease the invasiveness of cancerous cells by suppressing epithelial-mesenchymal transition (EMT). This study aimed to evaluate the effect of conjugated linoleic acid (CLA) treatment, natural ligand of HNF4α, on the proliferation, migration, and invasion capacities of HCC cells in vitro. Materials and Method. Sk-Hep-1 and Hep-3B cells were treated with different doses of CLA or BIM5078 [1-(2'-chloro-5'-nitrobenzenesulfonyl)-2-methylbenzimidazole], an HNF4α antagonist. The expression levels of HNF4a and EMT related genes were evaluated and associated to hepatocytic functionalities, migration, and colony formation capacities, as well as to viability and proliferation rate of HCC cells. Results: In both HCC lines, CLA treatment induced HNF4α expression in parallel to significantly decreased EMT marker levels, migration, colony formation capacity, and proliferation rate, whereas BIM5078 treatment resulted in the opposite effects. Moreover, CLA supplementation also upregulated ALB, ZO1, and HNF4α proteins as well as glycogen storage capacity in the treated HCC cells. Conclusion: CLA treatment can induce a remarkable hepatocytic differentiation in HCC cells and attenuates cancerous features. This could be as a result of HNF4a induction and EMT inhibition.

3.
Inflamm Res ; 71(7-8): 887-898, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716172

RESUMO

OBJECTIVE AND DESIGN: Mesenchymal stromal cells (MSCs) are currently used in cell reparative medicine due to their trophic and ant-inflammatory properties. The modulation of stem cell properties by phytochemicals has been suggested as a tool to empower their tissue repair capacity. In vitro, MSCs are characterized by their tri-lineage potential that holds great interest for tissue regeneration. Ptychotis Verticillata (PV), an aromatic and medicinal plant, may be thus used to modulate the in vitro multilineage potential of MSCs. MATERIALS AND METHODS: We screened the impact of PV-derived essential oil and their bioactive molecules (thymol and carvacrol) on the in vitro multilineage potential of MSCs. Different concentrations and incubation times of these compounds were assessed during the osteogenesis and adipogenesis of MSCs. RESULTS: The analysis of 75 conditions indicates that these compounds are biologically active by promoting two major differentiation lineages from MSCs. In a time- and dose-dependent manner, thymol and carvacrol increased the osteogenesis and adipogenesis. CONCLUSION: According to these preliminary observations, the addition of PV extract may stimulate the tissue regenerative and repair functions of MSCs. Further optimization of compound extraction and characterization from PV as well as cell treatment conditions should increase their therapeutic value in combination with MSCs.


Assuntos
Células-Tronco Mesenquimais , Timol , Diferenciação Celular , Células Cultivadas , Humanos , Inflamação , Osteogênese
4.
Molecules ; 26(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466806

RESUMO

Acute myeloid leukemia (AML) is a cancer of the myeloid lineage of blood cells, and treatment for AML is lengthy and can be very expensive. Medicinal plants and their bioactive molecules are potential candidates for improving human health. In this work, we studied the effect of Ptychotis verticillata (PV) essential oil and its derivatives, carvacrol and thymol, in AML cell lines. We demonstrated that a combination of carvacrol and thymol induced tumor cell death with low toxicity on normal cells. Mechanistically, we highlighted that different molecular pathways, including apoptosis, oxidative, reticular stress, autophagy, and necrosis, are implicated in this potential synergistic effect. Using quantitative RT-PCR, Western blotting, and apoptosis inhibitors, we showed that cell death induced by the carvacrol and thymol combination is caspase-dependent in the HL60 cell line and caspase-independent in the other cell lines tested. Further investigations should focus on improving the manufacturing of these compounds and understanding their anti-tumoral mechanisms of action. These efforts will lead to an increase in the efficiency of the oncotherapy strategy regarding AML.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Cimenos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Timol/farmacologia , Anti-Infecciosos/farmacologia , Proliferação de Células , Sinergismo Farmacológico , Humanos , Leucemia Mieloide Aguda/patologia , Células Tumorais Cultivadas
5.
J Biochem Mol Toxicol ; 34(8): e22516, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32363662

RESUMO

The liver is the organ responsible for bisphenol A (BPA) metabolism, an environmental chemical agent. Exposure to this toxin is associated with liver abnormalities and dysfunction. An important role played by excitatory amino acid transporters (EAATs) of the slc1 gene family has been reported in liver injuries. To gain insight into a plausible effect of BPA exposure in the liver glutamate/aspartate transport, using the human hepatoblastoma cell line HepG2, we report a BPA-dependent dynamic regulation of SLC1A3 and SLC1A2. Through the use of radioactive [3 H]- d-aspartate uptake experiments and immunochemical approaches, we characterized time and dose-dependent regulation of the protein levels and function of these transporters after acute exposure to BPA. An increase in nuclear Yin Yang 1 was found. These results suggest an important involvement of the EAATs in liver physiology and its disruption after acute BPA exposure.


Assuntos
Ácido Aspártico/metabolismo , Compostos Benzidrílicos/toxicidade , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Fígado/metabolismo , Fenóis/toxicidade , Transporte Biológico Ativo/efeitos dos fármacos , Células Hep G2 , Humanos , Fator de Transcrição YY1/metabolismo
6.
Food Chem Toxicol ; 134: 110844, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31562950

RESUMO

Mesenchymal stromal cells (MSCs) represent a progenitor cell population with several biological properties. MSCs are thus of therapeutic interest for cell-based therapy but great efforts are needed to enhance their efficiency and safety. Herbal remedies and in particular their bioactive molecules, are potential candidates for improving human health. The novelty and originality of this study is to develop an efficient cell-therapeutic product by combining MSCs with medicinal plant derived bioactive molecules. Thus, the impact of Essential Oil, Thymol and Carvacrol from Ptychotis verticillata on several BM-MSC biological features were studied. These compounds have shown positive effects on MSCs by preserving their morphology, sustaining their viability, promoting their proliferation, protecting them from cytotoxicity and oxidative stress. Accordingly, the combined administration of P. verticillata extract and MSCs may represent a new approach to enhance the therapeutic issue. Further investigations should greatly improve the manufacturing of these compounds as well as our understanding of the therapeutic effects of these bioactive molecules on the biology and functions of MSCs.


Assuntos
Cimenos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Óleos Voláteis/farmacologia , Timol/farmacologia , Proliferação de Células/efeitos dos fármacos , Humanos
7.
World J Gastroenterol ; 14(22): 3464-70, 2008 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-18567072

RESUMO

Liver cell transplantation is an attractive technique to treat liver-based inborn errors of metabolism. The feasibility and efficacy of the procedure has been demonstrated, leading to medium term partial metabolic control of various diseases. Crigler-Najjar is the paradigm of such diseases in that the host liver is lacking one function with an otherwise normal parenchyma. The patient is at permanent risk for irreversible brain damage. The goal of liver cell transplantation is to reduce serum bilirubin levels within safe limits and to alleviate phototherapy requirements to improve quality of life. Preliminary data on Gunn rats, the rodent model of the disease, were encouraging and have led to successful clinical trials. Herein we report on two additional patients and describe the current limits of the technique in terms of durability of the response as compared to alternative therapeutic procedures. We discuss the future developments of the technique and new emerging perspectives.


Assuntos
Transplante de Células/métodos , Síndrome de Crigler-Najjar/cirurgia , Fígado/citologia , Animais , Bilirrubina/sangue , Criança , Síndrome de Crigler-Najjar/sangue , Modelos Animais de Doenças , Feminino , Humanos , Lactente , Ratos , Ratos Gunn , Resultado do Tratamento
8.
J Neurochem ; 94(2): 405-16, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15998291

RESUMO

Excitatory transmission in the CNS necessitates the existence of dynamic controls of the glutamate uptake achieved by astrocytes, both in physiological conditions and under pathological circumstances characterized by gliosis. In this context, this study was aimed at evaluating the involvement of group I metabotropic glutamate receptors (mGluR) in the regulation of glutamate transport in a model of rat astrocytes undergoing in vitro activation using a cocktail of growth factors (G5 supplement). The vast majority of the cells were found to take up aspartate, mainly through the glutamate/aspartate transporter (GLAST), and at least 60% expressed functional mGluR5a. When exposed for 15 s to the selective group I mGluR agonist (S)-3,5-dihydroxyphenylglycine, reactive astrocytes showed a significant increase in their capacity to take up aspartate. This effect was confirmed at the single-cell level, since activation of mGluRs significantly increased the initial slope of aspartate-dependent Na+ entry associated with the activity of glutamate transporters. This up-regulation was inhibited by an antagonist of mGluR5 and, more importantly, was sensitive to a specific glutamate transporter 1 (GLT-1) blocker. The acute influence of mGluR5 on aspartate uptake was phospholipase C- and protein kinase C-dependent, and was mimicked by phorbol esters. We conclude that mGluR5a contributes to a dynamic control of GLT-1 function in activated astrocytes, acting as a glial sensor of the extracellular glutamate concentration in order to acutely regulate the excitatory transmission.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacologia , Astrócitos/efeitos dos fármacos , Biotinilação/métodos , Western Blotting/métodos , Cálcio/metabolismo , Carbacol/farmacologia , Células Cultivadas , Agonistas Colinérgicos/farmacologia , Cromonas/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Glicina/análogos & derivados , Glicina/farmacologia , Imuno-Histoquímica/métodos , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Ésteres de Forbol/farmacologia , Proteína Quinase C/metabolismo , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Resorcinóis/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sódio/metabolismo , Trítio/metabolismo , Fosfolipases Tipo C/metabolismo
9.
Neurochem Int ; 46(2): 137-47, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15627514

RESUMO

In vitro culture of astroglial progenitors can be obtained from early post-natal brain tissues and several methods have been reported for promoting their maturation into differentiated astrocytes. Hence, a combination of several nutriments/growth factors -- the G5 supplement (insulin, transferrin, selenite, biotin, hydrocortisone, fibroblast growth factor and epidermal growth factor) -- is widely used as a culture additive favouring the growth, differentiation and maturation of primary cultured astrocytes. Considering the key role played by glial cells in the clearance of glutamate in the synapses, cultured astrocytes are frequently used as a model for the study of glutamate transporters. Indeed, it has been shown that when tested separately, growth factors influence the expression and activity of the GLAST and GLT-1. The present study aimed at characterising the functional expression of these transporters during the time course of differentiation of cultured cortical astrocytes exposed to the supplement G5. After a few days, the vast majority of cells exposed to this supplement adopted a typical stellate morphology (fibrous or type II astrocytes) and showed intense expression of the glial fibrillary acidic protein. Both RT-PCR and immunoblotting studies revealed that the expression of both GLAST and GLT-1 rapidly increased in these cells. While this was correlated with a significant increase in specific uptake of radiolabelled aspartate, fluorescence monitoring of the Na+ influx associated with glutamate transporters activity revealed that the exposure to the G5 supplement considerably increased the percentage of cells participating in the uptake. Biochemical and pharmacological studies revealed that this activity did not involve GLT-1 but most likely reflected an increase in GLAST-mediated uptake. Together, these data indicate that the addition of this classical combination of growth factors and nutriments drives the rapid differentiation toward a homogenous culture of fibrous astrocytes expressing functional glutamate transporters.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Substâncias de Crescimento/farmacologia , Animais , Animais Recém-Nascidos , Transporte Biológico Ativo , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Primers do DNA , Transportador 2 de Aminoácido Excitatório/metabolismo , Imunofluorescência , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sódio/metabolismo , Sódio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA