Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pineal Res ; 76(1): e12930, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241677

RESUMO

Age-related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of light-induced melatonin suppression in young and older individuals. In a within-subject design study, young and older participants were exposed for 60 min (0030-0130 at night) to nine narrow-band lights (range: 420-620 nm). Plasma melatonin suppression was calculated at 15, 30, 45, and 60 min time intervals. Individual spectral sensitivity of melatonin suppression and photoreceptor contribution were predicted for each interval and age group. In young participants, melanopsin solely drove melatonin suppression at all time intervals, with a peak sensitivity at 485.3 nm established only after 15 min of light exposure. Conversely, in older participants, spectral light-driven melatonin suppression was best explained by a more complex model combining melanopsin, S-cone, and M-cone functions, with a stable peak (~500 nm) at 30, 45, and 60 min of light exposure. Aging is associated with a distinct photoreceptor contribution to melatonin suppression by light. While in young adults melanopsin-only photoreception is a reliable predictor of melatonin suppression, in older individuals this process is jointly driven by melanopsin, S-cone, and M-cone functions. These findings offer new prospects for customizing light therapy for older individuals.


Assuntos
Melatonina , Adulto Jovem , Humanos , Idoso , Células Fotorreceptoras de Vertebrados , Células Fotorreceptoras Retinianas Cones , Opsinas de Bastonetes , Ritmo Circadiano/fisiologia , Envelhecimento
2.
Sci Rep ; 11(1): 7586, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828194

RESUMO

Myopia results from an excessive axial growth of the eye, causing abnormal projection of remote images in front of the retina. Without adequate interventions, myopia is forecasted to affect 50% of the world population by 2050. Exposure to outdoor light plays a critical role in preventing myopia in children, possibly through the brightness and blue-shifted spectral composition of sunlight, which lacks in artificial indoor lighting. Here, we evaluated the impact of moderate levels of ambient standard white (SW: 233.1 lux, 3900 K) and blue-enriched white (BEW: 223.8 lux, 9700 K) lights on ocular growth and metabolomics in a chicken-model of form-deprivation myopia. Compared to SW light, BEW light decreased aberrant ocular axial elongation and accelerated recovery from form-deprivation. Furthermore, the metabolomic profiles in the vitreous and retinas of recovering form-deprived eyes were distinct from control eyes and were dependent on the spectral content of ambient light. For instance, exposure to BEW light was associated with deep lipid remodeling and metabolic changes related to energy production, cell proliferation, collagen turnover and nitric oxide metabolism. This study provides new insight on light-dependent modulations in ocular growth and metabolomics. If replicable in humans, our findings open new potential avenues for spectrally-tailored light-therapy strategies for myopia.


Assuntos
Miopia/prevenção & controle , Retina/efeitos da radiação , Corpo Vítreo/metabolismo , Animais , Comprimento Axial do Olho/crescimento & desenvolvimento , Galinhas , Modelos Animais de Doenças , Olho/crescimento & desenvolvimento , Olho/efeitos da radiação , Hiperopia/fisiopatologia , Luz , Iluminação/métodos , Metabolômica , Miopia/metabolismo , Miopia/radioterapia , Fototerapia/métodos , Refração Ocular , Retina/patologia , Luz Solar , Visão Ocular , Corpo Vítreo/patologia
3.
Ther Adv Ophthalmol ; 13: 25158414211059246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34988370

RESUMO

Myopia is far beyond its inconvenience and represents a true, highly prevalent, sight-threatening ocular condition, especially in Asia. Without adequate interventions, the current epidemic of myopia is projected to affect 50% of the world population by 2050, becoming the leading cause of irreversible blindness. Although blurred vision, the predominant symptom of myopia, can be improved by contact lenses, glasses or refractive surgery, corrected myopia, particularly high myopia, still carries the risk of secondary blinding complications such as glaucoma, myopic maculopathy and retinal detachment, prompting the need for prevention. Epidemiological studies have reported an association between outdoor time and myopia prevention in children. The protective effect of time spent outdoors could be due to the unique characteristics (intensity, spectral distribution, temporal pattern, etc.) of sunlight that are lacking in artificial lighting. Concomitantly, studies in animal models have highlighted the efficacy of light and its components in delaying or even stopping the development of myopia and endeavoured to elucidate possible mechanisms involved in this process. In this narrative review, we (1) summarize the current knowledge concerning light modulation of ocular growth and refractive error development based on studies in human and animal models, (2) summarize potential neurobiological mechanisms involved in the effects of light on ocular growth and emmetropization and (3) highlight a potential pathway for the translational development of noninvasive light-therapy strategies for myopia prevention in children.

4.
J Clin Invest ; 126(3): 938-47, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26854928

RESUMO

BACKGROUND: Beyond image formation, the light that is detected by retinal photoreceptors influences subcortical functions, including circadian timing, sleep, and arousal. The physiology of nonimage-forming (NIF) photoresponses in humans is not well understood; therefore, the development of therapeutic interventions based on this physiology, such as bright light therapy to treat chronobiological disorders, remains challenging. METHODS: Thirty-nine participants were exposed to 60 minutes of either continuous light (n = 8) or sequences of 2-millisecond light flashes (n = 31) with different interstimulus intervals (ISIs; ranging from 2.5 to 240 seconds). Melatonin phase shift and suppression, along with changes in alertness and sleepiness, were assessed. RESULTS: We determined that the human circadian system integrates flash sequences in a nonlinear fashion with a linear rise to a peak response (ISI = 7.6 ± 0.53 seconds) and a power function decrease following the peak of responsivity. At peak ISI, flashes were at least 2-fold more effective in phase delaying the circadian system as compared with exposure to equiluminous continuous light 3,800 times the duration. Flashes did not change melatonin concentrations or alertness in an ISI-dependent manner. CONCLUSION: We have demonstrated that intermittent light is more effective than continuous light at eliciting circadian changes. These findings cast light on the phenomenology of photic integration and suggest a dichotomous retinohypothalamic network leading to circadian phase shifting and other NIF photoresponses. Further clinical trials are required to judge the practicality of light flash protocols. TRIAL REGISTRATION: Clinicaltrials.gov NCT01119365. FUNDING: National Heart, Lung, and Blood Institute (1R01HL108441-01A1) and Department of Veterans Affairs Sierra Pacific Mental Illness Research, Education, and Clinical Center.


Assuntos
Ritmo Circadiano/efeitos da radiação , Melatonina/sangue , Adulto , Feminino , Humanos , Masculino , Estimulação Luminosa , Percepção Visual , Vigília/efeitos da radiação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA