Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Endocr J ; 69(7): 797-807, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35125377

RESUMO

Prenatal and postnatal biphasic increases in plasma testosterone levels derived from perinatal testes are considered critical for defeminizing/masculinizing the brain mechanism that regulates sexual behavior in male rats. Hypothalamic kisspeptin neurons are indispensable for stimulating GnRH and downstream gonadotropin, as well as the consequent testicular testosterone production/release in adult male rats. However, it is unclear whether kisspeptin is responsible for the increase in plasma testosterone levels in perinatal male rats. The present study aimed to investigate the role of Kiss1/kisspeptin in generating perinatal plasma LH and the consequent testosterone increase in male rats by comparing the plasma testosterone and LH profiles of wild-type (Kiss1+/+) and Kiss1 knockout (Kiss1-/-) male rats. A biphasic pattern of plasma testosterone levels, with peaks in the prenatal and postnatal periods, was found in both Kiss1+/+ and Kiss1-/- male rats. Postnatal plasma testosterone and LH levels were significantly lower in Kiss1-/- male rats than in Kiss1+/+ male rats, whereas the levels in the prenatal embryonic period were comparable between the genotypes. Exogenous kisspeptin challenge significantly increased plasma testosterone and LH levels and the number of c-Fos-immunoreactive GnRH neurons in neonatal Kiss1-/- and Kiss1+/+ male rats. Kiss1 and Gpr54 (kisspeptin receptor gene) were found in the testes of neonatal rats, but kisspeptin treatment failed to stimulate testosterone release in the cultured testes of both genotypes. These findings suggest that postnatal, but not prenatal, testosterone increase in male rats is mainly induced by central kisspeptin-dependent stimulation of GnRH and consequent LH release.


Assuntos
Kisspeptinas , Testosterona , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/farmacologia , Hormônio Luteinizante , Masculino , Gravidez , Ratos
2.
Nutrients ; 14(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35057531

RESUMO

Cachexia is one of the most common, related factors of malnutrition in cancer patients. Cancer cachexia is a multifactorial syndrome characterized by persistent loss of skeletal muscle mass and fat mass, resulting in irreversible and progressive functional impairment. The skeletal muscle loss cannot be reversed by conventional nutritional support, and a combination of anti-inflammatory agents and other nutrients is recommended. In this review, we reviewed the effects of nutrients that are expected to combat muscle loss caused by cancer cachexia (eicosapentaenoic acid, ß-hydroxy-ß-methylbutyrate, creatine, and carnitine) to propose nutritional approaches that can be taken at present. Current evidence is based on the intake of nutrients as supplements; however, the long-term and continuous intake of nutrients as food has the potential to be useful for the body. Therefore, in addition to conventional nutritional support, we believe that it is important for the dietitian to work with the clinical team to first fully assess the patient's condition and then to safely incorporate nutrients that are expected to have specific functions for cancer cachexia from foods and supplements.


Assuntos
Caquexia/terapia , Suplementos Nutricionais , Alimento Funcional , Neoplasias/complicações , Apoio Nutricional/métodos , Caquexia/etiologia , Humanos , Nutricionistas
3.
Endocrinology ; 162(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34161572

RESUMO

Lowered glucose availability, sensed by the hindbrain, has been suggested to enhance gluconeogenesis and food intake as well as suppress reproductive function. In fact, our previous histological and in vitro studies suggest that hindbrain ependymal cells function as a glucose sensor. The present study aimed to clarify the hindbrain glucose sensor-hypothalamic neural pathway activated in response to hindbrain glucoprivation to mediate counterregulatory physiological responses. Administration of 2-deoxy-D-glucose (2DG), an inhibitor of glucose utilization, into the fourth ventricle (4V) of male rats for 0.5 hour induced messenger RNA (mRNA) expression of c-fos, a marker for cellular activation, in ependymal cells in the 4V, but not in the lateral ventricle, the third ventricle or the central canal without a significant change in blood glucose and testosterone levels. Administration of 2DG into the 4V for 1 hour significantly increased blood glucose levels, food intake, and decreased blood testosterone levels. Simultaneously, the expression of c-Fos protein was detected in the 4V ependymal cells; dopamine ß-hydroxylase-immunoreactive cells in the C1, C2, and A6 regions; neuropeptide Y (NPY) mRNA-positive cells in the C2; corticotropin-releasing hormone (CRH) mRNA-positive cells in the hypothalamic paraventricular nucleus (PVN); and NPY mRNA-positive cells in the arcuate nucleus (ARC). Taken together, these results suggest that lowered glucose availability, sensed by 4V ependymal cells, activates hindbrain catecholaminergic and/or NPY neurons followed by CRH neurons in the PVN and NPY neurons in the ARC, thereby leading to counterregulatory responses, such as an enhancement of gluconeogenesis, increased food intake, and suppression of sex steroid secretion.


Assuntos
Glucose/metabolismo , Vias Neurais/metabolismo , Rombencéfalo/metabolismo , Animais , Glicemia/metabolismo , Ingestão de Alimentos/fisiologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Privação de Alimentos/fisiologia , Glucose/deficiência , Glucose/farmacologia , Hipotálamo/anatomia & histologia , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/efeitos dos fármacos , Ratos , Ratos Wistar , Rombencéfalo/anatomia & histologia , Rombencéfalo/citologia , Rombencéfalo/efeitos dos fármacos
4.
J Nat Med ; 75(2): 326-338, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33417145

RESUMO

A methanol extract from Isodonis Herba demonstrated significant proliferative effect on human hair follicle dermal papilla cells (HFDPC, % of control: 150.0 ± 2.0% at 20 µg/mL, p < 0.01). From the extract, 14 ent-kaurane-type diterpenoids (1-14), two abietane-type diterpenoids (15 and 16) and four triterpenoids (17-20) were isolated. Among the isolates, enmein (1, 160.9 ± 3.0% at 20 µM, p < 0.01), isodocarpin (2, 169.3 ± 4.9% at 5 µM, p < 0.01), nodosin (4, 160.5 ± 12.4% at 20 µM, p < 0.01), and oridonin (8, 165.4 ± 10.6% at 10 µM, p < 0.01) showed the proliferative effects. The principal component enmein (1) activated the expression of vascular endothelial growth factor (VEGF) mRNA, upregulated the production of VEGF and increased levels of phospho-Akt, phospho-GSK-3ß, and ß-catenin accumulation in HFDPC, which could be the mechanism of these activate proliferation activity.


Assuntos
Diterpenos do Tipo Caurano/metabolismo , Folículo Piloso/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/metabolismo , Proliferação de Células , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos
5.
J Reprod Dev ; 66(6): 579-586, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-32968033

RESUMO

Kisspeptin has an indispensable role in gonadotropin-releasing hormone/gonadotropin secretion in mammals. In rodents, kisspeptin neurons are located in distinct brain regions, namely the anteroventral periventricular nucleus-periventricular nucleus continuum (AVPV/PeN), arcuate nucleus (ARC), and medial amygdala (MeA). Among them, the physiological role of AVPV/PeN kisspeptin neurons in males has not been clarified yet. The present study aims to investigate the acute effects of the olfactory and/or mating stimulus with a female rat on hypothalamic and MeA Kiss1 mRNA expression, plasma luteinizing hormone (LH) and testosterone levels in male rats. Intact male rats were exposed to the following stimuli: exposure to clean bedding; exposure to female-soiled bedding as a female-olfactory stimulus; exposure to female-soiled bedding and mating stimulus with a female rat. The mating stimulus significantly increased the number of the AVPV/PeN Kiss1 mRNA-expressing cells in males within 5 minutes after the exposure, and significantly increased LH and testosterone levels, followed by an increase in male sexual behavior. Whereas, the males exposed to female-soiled bedding showed a moderate increase in LH levels and no significant change in testosterone levels and the number of the AVPV/PeN Kiss1 mRNA-expressing cells. Importantly, none of the stimuli affected the number of Kiss1 mRNA-expressing cells in the ARC and MeA. These results suggest that the mating-induced increase in AVPV/PeN Kiss1 mRNA expression may be, at least partly, involved in stimulating LH and testosterone release, and might consequently ensure male mating behavior. This study would be the first report suggesting that the AVPV/PeN kisspeptin neurons in males may play a physiological role in ensuring male reproductive performance.


Assuntos
Hipotálamo Anterior/metabolismo , Kisspeptinas/biossíntese , Hormônio Luteinizante/metabolismo , Comportamento Sexual Animal , Testosterona/metabolismo , Animais , Encéfalo/metabolismo , Comunicação Celular/efeitos dos fármacos , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Masculino , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Olfato
6.
J Reprod Dev ; 66(4): 359-367, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32307336

RESUMO

The present study aimed to evaluate whether novel conditional kisspeptin neuron-specific Kiss1 knockout (KO) mice utilizing the Cre-loxP system could recapitulate the infertility of global Kiss1 KO models, thereby providing further evidence for the fundamental role of hypothalamic kisspeptin neurons in regulating mammalian reproduction. We generated Kiss1-floxed mice and hypothalamic kisspeptin neuron-specific Cre-expressing transgenic mice and then crossed these two lines. The conditional Kiss1 KO mice showed pubertal failure along with a suppression of gonadotropin secretion and ovarian atrophy. These results indicate that newly-created hypothalamic Kiss1 KO mice obtained by the Cre-loxP system recapitulated the infertility of global Kiss1 KO models, suggesting that hypothalamic kisspeptin, but not peripheral kisspeptin, is critical for reproduction. Importantly, these Kiss1-floxed mice are now available and will be a valuable tool for detailed analyses of roles of each population of kisspeptin neurons in the brain and peripheral kisspeptin-producing cells by the spatiotemporal-specific manipulation of Cre expression.


Assuntos
Hipogonadismo/genética , Hipotálamo/metabolismo , Kisspeptinas/genética , Neurônios/metabolismo , Animais , Hipogonadismo/metabolismo , Kisspeptinas/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fenótipo
7.
J Bodyw Mov Ther ; 21(3): 549-553, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28750963

RESUMO

The aims of this study were to clarify the relationship between deformation of the VL during knee flexion and the stiffness of the VL. 40 lower limbs of 20 male normal volunteers were divided into control and tightness groups using the Ely test. Deformation of the VL in the transverse plane during active knee flexion from 0 to 90° was recorded using B-mode ultrasonography. Hardness of the VL was measured on the middle lateral thigh using a durometer. The reaction force at fully passive flexion was measured using a hand held dynamometer. The deformation of the VL and the hardness and passive torque showed significant differences between the 2 groups. The deformation of the VL showed a significantly higher correlation with hardness of the VL. Measurements of the deformation of the VL might be predicted by the elasticity around the VL.


Assuntos
Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/fisiologia , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/fisiologia , Adolescente , Fenômenos Biomecânicos , Eletromiografia , Humanos , Masculino , Amplitude de Movimento Articular , Ultrassonografia , Adulto Jovem
8.
Neuroendocrinology ; 103(6): 640-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26964105

RESUMO

After the discovery of hypothalamic kisspeptin encoded by the Kiss1 gene, the central mechanism regulating gonadotropin-releasing hormone (GnRH) secretion, and hence gonadotropin secretion, is gradually being unraveled. This has increased our understanding of the central mechanism regulating puberty and subsequent reproductive performance in mammals. Recently, emerging evidence has indicated the molecular and epigenetic mechanism regulating hypothalamic Kiss1 gene expression. Here we compile data regarding DNA and histone modifications in the Kiss1 promoter region and provide a hypothetic scheme of the molecular and epigenetic mechanism regulating Kiss1 gene expression in two populations of hypothalamic kisspeptin neurons, which govern puberty and subsequent reproductive performance via GnRH/gonadotropin secretion.


Assuntos
Epigênese Genética , Expressão Gênica/fisiologia , Hipotálamo/citologia , Kisspeptinas/genética , Kisspeptinas/metabolismo , Neurônios/metabolismo , Animais , Histonas/genética , Histonas/metabolismo , Humanos , Hipotálamo/metabolismo , Mamíferos/genética
9.
J Med Chem ; 58(10): 4204-19, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25970039

RESUMO

Lysophosphatidylserine (LysoPS) is an endogenous lipid mediator generated by hydrolysis of membrane phospholipid phosphatidylserine. Recent ligand screening of orphan G-protein-coupled receptors (GPCRs) identified two LysoPS-specific human GPCRs, namely, P2Y10 (LPS2) and GPR174 (LPS3), which, together with previously reported GPR34 (LPS1), comprise a LysoPS receptor family. Herein, we examined the structure-activity relationships of a series of synthetic LysoPS analogues toward these recently deorphanized LysoPS receptors, based on the idea that LysoPS can be regarded as consisting of distinct modules (fatty acid, glycerol, and l-serine) connected by phosphodiester and ester linkages. Starting from the endogenous ligand (1-oleoyl-LysoPS, 1), we optimized the structure of each module and the ester linkage. Accordingly, we identified some structural requirements of each module for potency and for receptor subtype selectivity. Further assembly of individually structure-optimized modules yielded a series of potent and LysoPS receptor subtype-selective agonists, particularly for P2Y10 and GPR174.


Assuntos
Lisofosfolipídeos/química , Receptores Acoplados a Proteínas G/agonistas , Receptores de Lisofosfolipídeos/agonistas , Receptores Purinérgicos P2/efeitos dos fármacos , Relação Estrutura-Atividade , Aminoácidos/química , Técnicas de Química Sintética , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Glicerol/química , Células HEK293 , Humanos , Estrutura Molecular , Fibras de Estresse/efeitos dos fármacos , Fibras de Estresse/metabolismo , Fator de Crescimento Transformador alfa/metabolismo
10.
PLoS One ; 8(11): e79437, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223949

RESUMO

Sexual dimorphism of the behaviors or physiological functions in mammals is mainly due to the sex difference of the brain. A number of studies have suggested that the brain is masculinized or defeminized by estradiol converted from testicular androgens in perinatal period in rodents. However, the mechanisms of estrogen action resulting in masculinization/defeminization of the brain have not been clarified yet. The large-scale analysis with microarray in the present study is an attempt to obtain the candidate gene(s) mediating the perinatal estrogen effect causing the brain sexual differentiation. Female mice were injected with estradiol benzoate (EB) or vehicle on the day of birth, and the hypothalamus was collected at either 1, 3, 6, 12, or 24 h after the EB injection. More than one hundred genes down-regulated by the EB treatment in a biphasic manner peaked at 3 h and 12-24 h after the EB treatment, while forty to seventy genes were constantly up-regulated after it. Twelve genes, including Ptgds, Hcrt, Tmed2, Klc1, and Nedd4, whose mRNA expressions were down-regulated by the neonatal EB treatment, were chosen for further examination by semiquantitative RT-PCR in the hypothalamus of perinatal intact male and female mice. We selected the genes based on the known profiles of their potential roles in brain development. mRNA expression levels of Ptgds, Hcrt, Tmed2, and Nedd4 were significantly lower in male mice than females at the day of birth, suggesting that the genes are down-regulated by estrogen converted from testicular androgen in perinatal male mice. Some genes, such as Ptgds encoding prostaglandin D2 production enzyme and Hcrt encording orexin, have been reported to have a role in neuroprotection. Thus, Ptgds and Hcrt could be possible candidate genes, which may mediate the effect of perinatal estrogen responsible for brain sexual differentiation.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Estrogênios/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Diferenciação Sexual/efeitos dos fármacos , Animais , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Morte Celular/efeitos dos fármacos , Estradiol/análogos & derivados , Estradiol/farmacologia , Feminino , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Cinesinas , Masculino , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Caracteres Sexuais , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA