Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ther Drug Monit ; 46(1): 80-88, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37735762

RESUMO

BACKGROUND: Optimal cefepime dosing is a challenge because of its dose-dependent neurotoxicity. This study aimed to determine individualized cefepime dosing for febrile neutropenia in patients with lymphoma or multiple myeloma. METHODS: This prospective study enrolled 16 patients receiving cefepime at a dose of 2 g every 12 hours. Unbound concentrations were determined at 0.5 hours, 7.2 hours [at the 60% time point of the 12 hours administration interval (C7.2h)], and 11 hours (trough concentration) after the first infusion (rate: 2 g/h). The primary and secondary end points were the predictive performance of the area under the unbound concentration-time curve (AUC unbound ) and the effect of unbound cefepime pharmacokinetic parameters on clinical response, respectively. RESULTS: The mean (SD) AUC unbound was 689.7 (226.6) mcg h/mL, which correlated with C7.2h (R 2 = 0.90), and the Bayesian posterior AUC unbound using only the trough concentration (R 2 = 0.66). Although higher exposure was more likely to show a better clinical response, each parameter did not indicate a statistical significance between positive and negative clinical responses ( P = 0.0907 for creatinine clearance (Ccr), 0.2523 for C7.2h, 0.4079 for trough concentration, and 0.1142 for AUC unbound ). Cutoff values were calculated as 80.2 mL/min for Ccr (sensitivity: 0.889, specificity: 0.714), 18.6 mcg/mL for C7.2h (sensitivity: 0.571, specificity: 1.000), and 9.2 mcg/mL for trough concentration (sensitivity: 0.571, specificity: 1.000). When aiming for a time above 100% the minimum inhibitory concentration, both continuous infusion of 4 g/d and intermittent infusion of 2 g every 8 hours achieved a probability of approximately 100% at a minimum inhibitory concentration of 8 mcg/mL. CONCLUSIONS: Therapeutic drug monitoring by sampling at C7.2h or trough can facilitate rapid dose optimization. Continuous infusion of 4 g/d was recommended. Intermittent dosing of 2 g every 8 hours was alternatively suggested for patients with a Ccr of 60-90 mL/min.


Assuntos
Neutropenia Febril , Linfoma , Mieloma Múltiplo , Humanos , Cefepima , Antibacterianos/farmacocinética , Mieloma Múltiplo/complicações , Mieloma Múltiplo/tratamento farmacológico , Estudos Prospectivos , Teorema de Bayes , Monitoramento de Medicamentos , Testes de Sensibilidade Microbiana , Neutropenia Febril/tratamento farmacológico
2.
Int J Biochem Cell Biol ; 40(11): 2410-20, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18487070

RESUMO

One of the formidable challenges in therapy of infections by human immunodeficiency virus (HIV) is the emergence of drug-resistant variants that attenuate the efficacy of highly active antiretroviral therapy (HAART). We have recently introduced 4'-ethynyl-nucleoside analogs as nucleoside reverse transcriptase inhibitors (NRTIs) that could be developed as therapeutics for treatment of HIV infections. In this study, we present 2'-deoxy-4'-C-ethynyl-2-fluoroadenosine (EFdA), a second generation 4'-ethynyl inhibitor that exerted highly potent activity against wild-type HIV-1 (EC50 approximately 0.07 nM). EFdA retains potency toward many HIV-1 resistant strains, including the multi-drug resistant clone HIV-1A62V/V75I/F77L/F116Y/Q151M. The selectivity index of EFdA (cytotoxicity/inhibitory activity) is more favorable than all approved NRTIs used in HIV therapy. Furthermore, EFdA efficiently inhibited clinical isolates from patients heavily treated with multiple anti-HIV-1 drugs. EFdA appears to be primarily phosphorylated by the cellular 2'-deoxycytidine kinase (dCK) because: (a) the antiviral activity of EFdA was reduced by the addition of dC, which competes nucleosides phosphorylated by the dCK pathway, (b) the antiviral activity of EFdA was significantly reduced in dCK-deficient HT-1080/Ara-Cr cells, but restored after dCK transduction. Further, unlike other dA analogs, EFdA is completely resistant to degradation by adenosine deaminase. Moderate decrease in susceptibility to EFdA is conferred by a combination of three RT mutations (I142V, T165R, and M184V) that result in a significant decrease of viral fitness. Molecular modeling analysis suggests that the M184V/I substitutions may reduce anti-HIV activity of EFdA through steric hindrance between its 4'-ethynyl moiety and the V/I184 beta-branched side chains. The present data suggest that EFdA, is a promising candidate for developing as a therapeutic agent for the treatment of individuals harboring multi-drug resistant HIV variants.


Assuntos
Desoxiadenosinas , Farmacorresistência Viral Múltipla , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Animais , Terapia Antirretroviral de Alta Atividade , Linhagem Celular , Desoxiadenosinas/química , Desoxiadenosinas/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/enzimologia , Humanos , Modelos Moleculares , Estrutura Molecular , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA