Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
J Nat Med ; 76(1): 59-67, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34304352

RESUMO

Paclitaxel, a standard chemotherapeutic agent for several types of cancer, including ovarian, breast, and non-small-cell lung cancer, causes peripheral neuropathy as an adverse effect in 60-70% of the patients. The utility of combination therapy with paclitaxel and goshajinkigan, a traditional Japanese Kampo medicine, in managing paclitaxel-induced neuropathy during chemotherapy has been explored. Paclitaxel is predominantly metabolized in the liver by cytochrome P450 (CYP) 2C8 to produce 6α-hydroxypaclitaxel and by CYP3A4 to produce 3'-p-hydroxypaclitaxel. In this study, we evaluated the inhibitory or inducing effects of goshajinkigan extract (GJG) and its representative and bioavailable constituents, geniposidic acid, plantagoguanidinic acid, paeoniflorin, catalpol, loganin, and neoline, on the metabolism of paclitaxel via CYP2C8 and CYP3A4 using pooled human liver microsomes and cultured human cryopreserved hepatocytes to provide the drug information about the pharmacokinetic interaction of this combination therapy. GJG significantly inhibited the production of 3'-p-hydroxypaclitaxel and 6α-hydroxypaclitaxel in vitro in a concentration-dependent manner. The half maximal inhibitory concentration (IC50) values of GJG were 4.5 and 7.8 mg/ml, respectively, for 3'-p-hydroxypaclitaxel and 6α-hydroxypaclitaxel productions. Neoline inhibited the production of 3'-p-hydroxypaclitaxel at 50 µM, but not at lower concentrations. Apart from neoline, other GJG constituents (at concentrations up to 50 or 10 µM of all test substances) did not exhibit inhibitory or inducing effects. Since GJG showed the inhibitory effect on the metabolism of paclitaxel at much higher concentrations than those used clinically, it can be concluded that GJG product does not exhibit any pharmacokinetic interaction with paclitaxel in clinical practice.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP3A , Interações Medicamentosas , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Microssomos Hepáticos , Paclitaxel
3.
Gene ; 806: 145921, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34454033

RESUMO

Maoto, a traditional Japanese medicine (Kampo), is widely used to treat upper respiratory tract infections, including influenza virus infection. Although maoto is known to inhibit pro-inflammatory responses in a rodent model of acute inflammation, its underlying mechanism remains to be determined. In this study, we investigated the involvement of immune responses and noradrenergic function in the inhibitory action of maoto. In a mouse model of polyI:C-induced acute inflammation, maoto was administered orally in conjunction with intraperitoneal injection of PolyI:C (6 mg/kg), and blood was collected after 2 h for measurement of plasma cytokines by ELISA. Maoto significantly decreased PolyI:C-induced TNF-α levels and increased IL-10 production. Neither pretreatment with IL-10 neutralizing antibodies nor T-cell deficiency using nude mice modified the inhibitory effect of maoto, indicating that the anti-inflammatory effects of maoto are independent of IL-10 and T cells. Furthermore, the inhibitory effects of maoto on PolyI:C-induced TNF-α production were not observed in ex vivo splenocytes, suggesting that maoto does not act directly on inflammatory cells. Lastly, pretreatment with a ß-adrenergic receptor antagonist partially cancelled the anti-inflammatory effects of maoto. Collectively, these results suggest that maoto mediates its anti-inflammatory effects via ß-adrenergic receptors in vivo.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Anti-Inflamatórios/farmacologia , Inflamação/prevenção & controle , Interleucina-10/genética , Extratos Vegetais/farmacologia , Receptores Adrenérgicos beta/genética , Administração Oral , Animais , Modelos Animais de Doenças , Efedrina/farmacologia , Regulação da Expressão Gênica , Injeções Intraperitoneais , Interleucina-10/agonistas , Interleucina-10/imunologia , Japão , Masculino , Medicina Kampo/métodos , Camundongos Endogâmicos BALB C , Camundongos Nus , Poli I-C/administração & dosagem , Poli I-C/antagonistas & inibidores , Receptores Adrenérgicos beta/imunologia , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
4.
Molecules ; 25(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962000

RESUMO

The Japanese traditional medicine maobushisaishinto (MBST) has been prescribed for treating upper respiratory tract infections, such as a common cold. However, its mode of action is poorly understood, especially concerning the MBST constituent Asiasari Radix (AR). In this study, we focused on AR, with an objective of clarifying its bioavailable active ingredients and role within MBST by performing pharmacokinetic and pharmacological studies. Firstly, we performed qualitative non-targeted analysis utilizing high-resolution mass spectrometry to explore the bioavailable ingredients of AR as well as quantitative targeted analysis to reveal plasma concentrations following oral administration of MBST in rats. Secondly, we performed in vitro pharmacological study of bioavailable AR ingredients in addition to other ingredients of MBST to confirm any agonistic activities against transient receptor potential (TRP) channels. As a result, methyl kakuol and other compounds derived from AR were detected in the rat plasma and showed agonistic activity against TRPA1. This study suggests that methyl kakuol as well as other compounds have the potential to be an active ingredient in AR and thus presumably would contribute in part to the effects exerted by MBST.


Assuntos
Medicamentos de Ervas Chinesas/química , Espectrometria de Massas em Tandem/métodos , Canais de Potencial de Receptor Transitório/química , Animais , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/metabolismo , Meia-Vida , Masculino , Medicina Tradicional , Óxido Nítrico/metabolismo , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Ratos , Ratos Sprague-Dawley , Canais de Potencial de Receptor Transitório/metabolismo
6.
Biofactors ; 37(6): 455-61, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22038782

RESUMO

The folk medicine Angelica keiskei (Ashitaba) exhibits antitumor, antioxidant and antidiabetic activities and it has recently attracted attention as a health food. Ashitaba is thought to have antithrombotic properties, but this has not yet been scientifically proven. The elevation of plasma plasminogen activator inhibitor 1 (PAI-1), an inhibitor of fibrinolysis results in a predisposition to the risk of thrombosis. The present study showed that Ashitaba exudates injected intraperitoneally and orally administered over long-term suppressed the lipopolysaccharide (LPS) induced PAI-1 increase in mouse plasma. We also found that xanthoangelol, xanthoangelols B and D, the components of Ashitaba exudates, significantly inhibited TNFα-induced PAI-1 production from human umbilical vein endothelial cells (HUVECs). These findings suggest that Ashitaba can decrease elevated PAI-1 production, and that daily consumption of Ashitaba product might maintain anticoagulant status by inhibiting elevations in PAI-1 under inflammatory conditions.


Assuntos
Angelica/química , Chalcona/análogos & derivados , Inflamação/metabolismo , Extratos Vegetais/farmacologia , Inibidor 1 de Ativador de Plasminogênio/biossíntese , Animais , Tempo de Sangramento , Coagulação Sanguínea/efeitos dos fármacos , Células Cultivadas , Chalcona/isolamento & purificação , Chalcona/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/etiologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Extratos Vegetais/isolamento & purificação , Inibidor 1 de Ativador de Plasminogênio/sangue , Inibidor 1 de Ativador de Plasminogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA