Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 10: 269, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319390

RESUMO

Recent studies have shown that Liuwei Dihuang pills (LWPs) can positively affect learning, memory and neurogenesis. However, the underlying molecular mechanisms are not understood. In the present study, we developed ALWPs, a mixture of Antler and LWPs, and investigated whether ALWPs can affect neuroinflammatory responses. We found that ALWPs (500 mg/ml) inhibited lipopolysaccharide (LPS)-induced proinflammatory cytokine IL-1ß mRNA levels in BV2 microglial cells but not primary astrocytes. ALWPs significantly reduced LPS-induced cell-surface levels of TLR4 to alter neuroinflammation. An examination of the molecular mechanisms by which ALWPs regulate the LPS-induced proinflammatory response revealed that ALWPs significantly downregulated LPS-induced levels of FAK phosphorylation, suggesting that ALWPs modulate FAK signaling to alter LPS-induced IL-1ß levels. In addition, treatment with ALWPs followed by LPS resulted in decreased levels of the transcription factor NF-κB in the nucleus compared with LPS alone. Moreover, ALWPs significantly suppressed LPS-induced BV2 microglial cell migration. To examine whether ALWPs modulate learning and memory in vivo, wild-type C57BL/6J mice were orally administered ALWPs (200 mg/kg) or PBS daily for 3 days, intraperitoneally injected (i.p.) with LPS (250 µg/kg) or PBS, and assessed in Y maze and NOR tests. We observed that oral administration of ALWPs to LPS-injected wild-type C57BL/6J mice significantly rescued short- and long-term memory. More importantly, oral administration of ALWPs to LPS-injected wild-type C57BL/6J mice significantly reduced microglial activation in the hippocampus and cortex. Taken together, our results suggest that ALWPs can suppress neuroinflammation-associated cognitive deficits and that ALWPs have potential as a drug for neuroinflammation/neurodegeneration-related diseases, including Alzheimer's disease (AD).

2.
Phytother Res ; 27(3): 404-11, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22619052

RESUMO

Jaceosidin is a naturally occurring flavone with pharmacological activity. Jaceosidin, as one of the major constituents of the medicinal herbs of the genus Artemisia, has been shown to exert anticancer, anti-oxidative, anti-inflammatory, and immunosuppressive effects. This study was undertaken to determine the effect of jaceosidin on microglia and neuroinflammation. Microglia are the innate immune cells in the central nervous system, and they play a central role in the initiation and maintenance of neuroinflammation. We report that jaceosidin inhibits inflammatory activation of microglia, reducing nitric oxide (NO) production and proinflammatory cytokine expression. IC50 for NO inhibition was 27 ± 0.4 µM. The flavone also attenuated microglial neurotoxicity in the microglia/neuroblastoma co-culture. Systemic injection of jaceosidin ameliorated neuroinflammation in the mouse model of experimental allergic encephalomyelitis. These results indicate that plant flavone jaceosidin is a microglial inhibitor with anti-neuroinflammation activity.


Assuntos
Anti-Inflamatórios/farmacologia , Flavonoides/farmacologia , Inflamação/metabolismo , Microglia/efeitos dos fármacos , Animais , Artemisia/química , Linhagem Celular , Técnicas de Cocultura , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Feminino , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Óxido Nítrico/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA