RESUMO
Dispersants can aid dispersion and biodegradation of oil in seawater, but the wider ecotoxicological effects of oil and dispersant to the base of marine food webs is unclear. Here we apply a metatranscriptomic approach to identify molecular responses of a natural marine microbial eukaryotic community to oil and chemically dispersed oil. Oil exposure stimulated the upregulation of ketogenesis in the eukaryotic community, which may alleviate carbon- and energy-limitation and reduce oxidative stress. In contrast, a chemically dispersed oil treatment stimulated eukaryotic genes and pathways consistent with nitrogen and oxygen depletion. These results suggest that the addition of dispersant may elevate bacterial biodegradation of crude oil, indirectly increasing competition for nitrogen between prokaryotic and eukaryotic communities as oxygen consumption induces bacterial anaerobic respiration and denitrification. Eukaryotic microbial communities may mitigate some of the negative effects of oil exposure such as reduced photosynthesis and elevated oxidative stress, through ketosis, but the addition of dispersant to the oil fundamentally alters the environmental and ecological conditions and therefore the biochemical response of the eukaryotic community.
Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Eucariotos , Petróleo/toxicidade , Poluição por Petróleo/análise , Água do Mar , Tensoativos , Transcriptoma , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
Species-level variability has made it difficult to determine the relative sensitivity of phytoplankton to oil and mixtures of oil and dispersant. Here we develop a phytoplankton group sensitivity index using ribosome sequence data that we apply to a mesocosm experiment in which a natural microbial community was exposed to oil and two oil-dispersant mixtures. The relative sensitivity of four phytoplankton taxonomic groups, diatoms, dinoflagellates, green algae, and Chrysophytes, was computed using the log of the ratio of the number of species that increase to the number that decrease in relative abundance in the treatment relative to the control. The index indicates that dinoflagellates are the most sensitive group to oil and oil-dispersant treatments while the Chrysophytes benefit under oil exposure compared to the other groups examined. The phytoplankton group sensitivity index can be generally applied to quantify and rank the relative sensitivity of diverse microbial groups to environmental conditions and pollutants.