Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 10725, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750797

RESUMO

Resistance to bacteriophage infections protects bacteria in phage-replete environments, enabling them to survive and multiply in the presence of their viral predators. However, such resistance may confer costs for strains, reducing their ecological fitness as expressed as competitiveness for resources or virulence or both. There is limited knowledge about such costs paid by phage-resistant plant pathogenic bacteria in their natural habitats. This study analyzed the costs of phage resistance paid by the phytopathogenic pectinolytic bacterium Dickeya solani both in vitro and in potato (Solanum tuberosum L.) plants. Thirteen Tn5 mutants of D. solani IPO 2222 were identified that exhibited resistance to infection by lytic bacteriophage vB_Dsol_D5 (ΦD5). The genes disrupted in these mutants encoded proteins involved in the synthesis of bacterial envelope components (viz. LPS, EPS and capsule). Although phage resistance did not affect most of the phenotypes of ΦD5-resistant D. solani such as growth rate, production of effectors, swimming and swarming motility, use of various carbon and nitrogen sources and biofilm formation evaluated in vitro, all phage resistant mutants were significantly compromised in their ability to survive on leaf surfaces as well as to grow within and cause disease symptoms in potato plants.


Assuntos
Bacteriófagos , Solanum tuberosum , Bacteriófagos/genética , Dickeya , Enterobacteriaceae/genética , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia
2.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298965

RESUMO

Pectobacterium parmentieri is a Gram-negative plant-pathogenic bacterium able to infect potato (Solanum tuberosum L.). Little is known about lytic bacteriophages infecting P. parmentieri and how phage-resistance influences the environmental fitness and virulence of this species. A lytic phage vB_Ppp_A38 (ϕA38) has been previously isolated and characterized as a potential biological control agent for the management of P. parmentieri. In this study, seven P. parmentieri SCC 3193 Tn5 mutants were identified that exhibited resistance to infection caused by vB_Ppp_A38 (ϕA38). The genes disrupted in these seven mutants encoded proteins involved in the assembly of O-antigen, sugar metabolism, and the production of bacterial capsule exopolysaccharides. The potential of A38-resistant P. parmentieri mutants for plant colonization and pathogenicity as well as other phenotypes expected to contribute to the ecological fitness of P. parmentieri, including growth rate, use of carbon and nitrogen sources, production of pectinolytic enzymes, proteases, cellulases, and siderophores, swimming and swarming motility, presence of capsule and flagella as well as the ability to form biofilm were assessed. Compared to the wild-type P. parmentieri strain, all phage-resistant mutants exhibited a reduced ability to colonize and to cause symptoms in growing potato (S. tuberosum L.) plants. The implications of bacteriophage resistance on the ecological fitness of P. parmentieri are discussed.


Assuntos
Bacteriófagos , Regulação Bacteriana da Expressão Gênica , Mutação , Pectobacterium , Doenças das Plantas/microbiologia , Polissacarídeos Bacterianos , Solanum tuberosum/microbiologia , Fatores de Virulência/biossíntese , Bacteriófagos/genética , Bacteriófagos/metabolismo , Pectobacterium/genética , Pectobacterium/metabolismo , Pectobacterium/patogenicidade , Pectobacterium/virologia , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo , Fatores de Virulência/genética
3.
Int J Mol Sci ; 22(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063632

RESUMO

Temperature is one of the critical factors affecting gene expression in bacteria. Despite the general interest in the link between bacterial phenotypes and environmental temperature, little is known about temperature-dependent gene expression in plant pathogenic Pectobacterium atrosepticum, a causative agent of potato blackleg and tuber soft rot worldwide. In this study, twenty-nine P. atrosepticum SCRI1043 thermoregulated genes were identified using Tn5-based transposon mutagenesis coupled with an inducible promotorless gusA gene as a reporter. From the pool of 29 genes, 14 were up-regulated at 18 °C, whereas 15 other genes were up-regulated at 28 °C. Among the thermoregulated loci, genes involved in primary bacterial metabolism, membrane-related proteins, fitness-corresponding factors, and several hypothetical proteins were found. The Tn5 mutants were tested for their pathogenicity in planta and for features that are likely to remain important for the pathogen to succeed in the (plant) environment. Five Tn5 mutants expressed visible phenotypes differentiating these mutants from the phenotype of the SCRI1043 wild-type strain. The gene disruptions in the Tn5 transposon mutants caused alterations in bacterial generation time, ability to form a biofilm, production of lipopolysaccharides, and virulence on potato tuber slices. The consequences of environmental temperature on the ability of P. atrosepticum to cause disease symptoms in potato are discussed.


Assuntos
Elementos de DNA Transponíveis/genética , Pectobacterium/genética , Doenças das Plantas/genética , Solanum tuberosum/genética , Resistência à Doença/genética , Regulação Bacteriana da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Pectinas/química , Pectinas/genética , Pectobacterium/patogenicidade , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Temperatura , Transposases/genética
4.
Int J Mol Sci ; 22(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063704

RESUMO

Carnivorous plants are exemplary natural sources of secondary metabolites with biological activity. However, the therapeutic antimicrobial potential of these compounds is limited due to intrinsic resistance of selected bacterial pathogens, among which Pseudomonas aeruginosa represents an extreme example. The objective of the study was to overcome the intrinsic resistance of P. aeruginosa by combining silver nanoparticles (AgNPs) with secondary metabolites from selected carnivorous plant species. We employed the broth microdilution method, the checkerboard titration technique and comprehensive phytochemical analyses to define interactions between nanoparticles and active compounds from carnivorous plants. It has been confirmed that P. aeruginosa is resistant to a broad range of secondary metabolites from carnivorous plants, i.e., naphthoquinones, flavonoids, phenolic acids (MBC = 512 µg mL-1) and only weakly sensitive to their mixtures, i.e., extracts and extracts' fractions. However, it was shown that the antimicrobial activity of extracts and fractions with a significant level of naphthoquinone (plumbagin) was significantly enhanced by AgNPs. Our studies clearly demonstrated a crucial role of naphthoquinones in AgNPs and extract interaction, as well as depicted the potential of AgNPs to restore the bactericidal activity of naphthoquinones towards P. aeruginosa. Our findings indicate the significant potential of nanoparticles to modulate the activity of selected secondary metabolites and revisit their antimicrobial potential towards human pathogenic bacteria.


Assuntos
Planta Carnívora/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/efeitos adversos , Antibacterianos/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Naftoquinonas/efeitos adversos , Naftoquinonas/química , Naftoquinonas/farmacologia , Extratos Vegetais/química , Pseudomonas aeruginosa/patogenicidade , Metabolismo Secundário/efeitos dos fármacos , Prata/química , Espectrofotometria Ultravioleta
5.
PLoS One ; 10(3): e0119812, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25803051

RESUMO

Pectinolytic Pectobacterium spp. and Dickeya spp. are necrotrophic bacterial pathogens of many important crops, including potato, worldwide. This study reports on the isolation and characterization of broad host lytic bacteriophages able to infect the dominant Pectobacterium spp. and Dickeya spp. affecting potato in Europe viz. Pectobacterium carotovorum subsp. carotovorum (Pcc), P. wasabiae (Pwa) and Dickeya solani (Dso) with the objective to assess their potential as biological disease control agents. Two lytic bacteriophages infecting stains of Pcc, Pwa and Dso were isolated from potato samples collected from two potato fields in central Poland. The ΦPD10.3 and ΦPD23.1 phages have morphology similar to other members of the Myoviridae family and the Caudovirales order, with a head diameter of 85 and 86 nm and length of tails of 117 and 121 nm, respectively. They were characterized for optimal multiplicity of infection, the rate of adsorption to the Pcc, Pwa and Dso cells, the latent period and the burst size. The phages were genotypically characterized with RAPD-PCR and RFLP techniques. The structural proteomes of both phages were obtained by fractionation of phage proteins by SDS-PAGE. Phage protein identification was performed by liquid chromatography-mass spectrometry (LC-MS) analysis. Pulsed-field gel electrophoresis (PFGE), genome sequencing and comparative genome analysis were used to gain knowledge of the length, organization and function of the ΦPD10.3 and ΦPD23.1 genomes. The potential use of ΦPD10.3 and ΦPD23.1 phages for the biocontrol of Pectobacterium spp. and Dickeya spp. infections in potato is discussed.


Assuntos
Bacteriófagos/genética , Bacteriófagos/fisiologia , Enterobacteriaceae/virologia , Pectobacterium/virologia , Proteômica , Adsorção , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Especificidade de Hospedeiro , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Tubérculos/microbiologia , Tubérculos/virologia , Solanum tuberosum/microbiologia , Solanum tuberosum/virologia
6.
Curr Microbiol ; 59(2): 187-92, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19459003

RESUMO

Three lytic phages (PhiRP1, PhiRP2, and PhiRP3) specific for Robinia pseudoacacia rhizobia were isolated from the soil under black locust. They were characterized by their morphology, host range, and some other properties including DNA molecular weights. Studied phages have been found to belong to Siphoviridae family that comprises viruses with long, and noncontractile tails. They had broad host ranges and effectively lysed not only Robinia pseudoacacia microsymbionts but also different Mesorhizobium species. The phages were homogenous in latent periods (300 min) but heterogeneous in burst sizes (100-200 phage particles per one infected cell) and rise periods (90-120 min). They showed a distinct adsorption rate to Robinia pseudoacacia rhizobia (70.4-93.94%). The molecular weights of phage DNAs estimated from restriction enzyme digests were in the range from ca. 82 kb to ca. 105 kb.


Assuntos
Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/isolamento & purificação , Rhizobiaceae/virologia , Microbiologia do Solo , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Peso Molecular , Robinia/microbiologia , Siphoviridae/ultraestrutura , Vírion/ultraestrutura , Ligação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA