Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ageing Res Rev ; 88: 101960, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224884

RESUMO

Alzheimer's disease (AD), also called senile dementia, is the most common neurological disorder. Around 50 million people, mostly of advanced age, are suffering from dementia worldwide and this is expected to reach 100-130 million between 2040 and 2050. AD is characterized by impaired glutamatergic and cholinergic neurotransmission, which is associated with clinical and pathological symptoms. AD is characterized clinically by loss of cognition and memory impairment and pathologically by senile plaques formed by Amyloid ß deposits or neurofibrillary tangles (NFT) consisting of aggregated tau proteins. Amyloid ß deposits are responsible for glutamatergic dysfunction that develops NMDA dependent Ca2+ influx into postsynaptic neurons generating slow excitotoxicity process leading to oxidative stress and finally impaired cognition and neuronal loss. Amyloid decreases acetylcholine release, synthesis and neuronal transport. The decreased levels of neurotransmitter acetylcholine, neuronal loss, tau aggregation, amyloid ß plaques, increased oxidative stress, neuroinflammation, bio-metal dyshomeostasis, autophagy, cell cycle dysregulation, mitochondrial dysfunction, and endoplasmic reticulum dysfunction are the factors responsible for the pathogenesis of AD. Acetylcholinesterase, NMDA, Glutamate, BACE1, 5HT6, and RAGE (Receptors for Advanced Glycation End products) are receptors targeted in treatment of AD. The FDA approved acetylcholinesterase inhibitors Donepezil, Galantamine and Rivastigmine and N-methyl-D-aspartate antagonist Memantine provide symptomatic relief. Different therapies such as amyloid ß therapies, tau-based therapies, neurotransmitter-based therapies, autophagy-based therapies, multi-target therapeutic strategies, and gene therapy modify the natural course of the disease. Herbal and food intake is also important as preventive strategy and recently focus has also been placed on herbal drugs for treatment. This review focuses on the molecular aspects, pathogenesis and recent studies that signifies the potential of medicinal plants and their extracts or chemical constituents for the treatment of degenerative symptoms related to AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides , Secretases da Proteína Precursora do Amiloide , Acetilcolina/fisiologia , Acetilcolina/uso terapêutico , Acetilcolinesterase/uso terapêutico , N-Metilaspartato/uso terapêutico , Ácido Aspártico Endopeptidases/uso terapêutico
2.
Drug Deliv Transl Res ; 9(4): 848-865, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30911996

RESUMO

The aim of present study was to co-administer curcumin (CRM) liquisolid pellets and coated duloxetine hydrochloride (DXH) pellets in rats to treat neuropathic pain (NP) associated with chronic constriction injury (CCI). To formulate liquisolid pellets of CRM, it was first dissolved in Tween-80 and then adsorbed on the porous surface of MCC PH102 and Syloid XDP that were used as carrier and coating materials, respectively. Central composite design was used to optimize the liquisolid formulation. The results of powder X-ray diffraction studies, differential scanning calorimetry, and scanning electron microscopy showed complete solubility of drug in Tween-80 followed by its complete adsorption on the porous surface of Syloid XDP and MCC PH102. Both DXH and liquisolid CRM powders were converted into pellets using extrusion-spheronization. DXH pellets were further coated with Eudragit S100 to bypass the gastric pH. About 32.31-fold increase in dissolution rate of CRM present in liquisolid formulation was observed as compared to its unprocessed form. Similarly, the dissolution profile in 0.1 N HCl for Eudragit S100-coated DXH showed complete protection of drug for 2 h and complete release after its introduction in buffer medium (0.2 M phosphate buffer pH 6.8). he pharmacokinetic studies carried out on rats revealed 7.3-fold increase in bioavailability of CRM present in liquisolid pellets and 4.1-fold increase in bioavailability of DXH present in coated pellets was observed as compared to their unprocessed pellets. This increase in bioavailability of drugs caused significant amelioration of CCI-induced pain in rats as compared to their unprocessed forms. The histological sections showed better improvement in regeneration of nerve fibers in rats.


Assuntos
Curcumina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Cloridrato de Duloxetina/administração & dosagem , Excipientes/administração & dosagem , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Analgésicos/administração & dosagem , Analgésicos/farmacocinética , Animais , Disponibilidade Biológica , Temperatura Baixa/efeitos adversos , Curcumina/química , Curcumina/farmacocinética , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Cloridrato de Duloxetina/química , Cloridrato de Duloxetina/farmacocinética , Excipientes/química , Excipientes/farmacocinética , Mucosa Gástrica/metabolismo , Glutationa/metabolismo , Temperatura Alta/efeitos adversos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Peroxidase/metabolismo , Ratos , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Tato , Resultado do Tratamento , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA