Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Z Naturforsch C J Biosci ; 79(7-8): 209-220, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38635803

RESUMO

Pancreatic cancer is a fatal illness caused by mutations in multiple genes. Pancreatic cancer damages the organ that helps in digestion, resulting in symptoms including fatigue, bloating, and nausea. The use of medicinal plants has been crucial in the treatment of numerous disorders. The medicinal plant Calliandra Harrisi has been widely exploited for its possibilities in biology and medicine. The current study aimed to assess the biopotential of biologically active substances against pancreatic cancer. The GC-MS data of these phytochemicals from Calliandra Harrisi were further subjected to computational approaches with pancreatic cancer genes to evaluate their potential as therapeutic candidates. Molecular docking analysis revealed that N-[Carboxymethyl] maleamic acid is the leading molecule responsible for protein denaturation inhibition, having the highest binding affinity of 6.8 kJ/mol among all other compounds with KRAS inflammatory proteins. Furthermore, ADMET analysis and Lipinski's rule validation were also performed revealing its higher absorption in the gastrointestinal tract. The results of the hepatotoxicity test demonstrated that phytochemicals are non-toxic, safe to use, and do not cause necrosis, fibrosis, or vacuolar degeneration even at excessive levels. Calliandra Harrisi has phytoconstituents that have a variety of pharmacological uses in consideration.


Assuntos
Desenho de Fármacos , Cromatografia Gasosa-Espectrometria de Massas , Simulação de Acoplamento Molecular , Neoplasias Pancreáticas , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Humanos , Medicina de Precisão/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Plantas Medicinais/química , Plantas Medicinais/genética , Simulação por Computador , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia
2.
Sci Rep ; 14(1): 5751, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459108

RESUMO

L. edodes (L. edodes) is the most consumed mushroom in the world and has been well known for its therapeutic potential as an edible and medicinal candidate, it contains dietary fibers, vitamins, proteins, minerals, and carbohydrates. In the current study butanolic extract of mushroom was used to form semisolid butanol extract. The current study aimed to explore biometabolites that might have biological activities in n-butanol extract of L. edodes using FT-IR and GC-MS and LC-MS. The synergistic properties of bioactive compounds were futher assessed by performing different biological assays such as antioxidant, anti-inflammatory and antidiabetic. FTIR spectra showed different functional groups including amide N-H group, Alkane (C-H stretching), and (C = C stretching) groups at different spectrum peaks in the range of 500 cm-1 to 5000 cm-1 respectively. GC-MS profiling of n-butanol extract depicted 34 potent biomolecules among those dimethyl; Morphine, 2TMS derivative; Benzoic acid, methyl ester 1-(2-methoxy-1-methylethoxy)-2-propanol were spotted at highest range. Results indicate that L. edodes n-butanol extract showed a maximum anti-inflammatory potential 91.4% at 300 mg/mL. Antioxidant activity was observed by measuring free radical scavenging activity which is 64.6% at optimized concentration along with good antidiabetic activity. In-silico study executed the biopotential of active ingredient morphine which proved the best docking score (- 7.0 kJ/mol) against aldose reductase. The in-silico drug design analysis was performed on biometabolites detected through GC-MS that might be a potential target for sulfatase-2 to treat ruminated arthritis. Morphine binds more strongly (- 7.9 kJ/mol) than other bioactive constituents indicated. QSAR and ADMET analysis shown that morphine is a good candidates against ruminated arthritis. The current study showed that L. edodes might be used as potent drug molecules to cure multiple ailments. As mushrooms have high bioactivity, they can be used against different diseases and to develop antibacterial drugs based on the current situation in the world in which drug resistance is going to increase due to misuse of antibiotics so new and noval biological active compounds are needed to overcome the situation.


Assuntos
1-Butanol , Artrite , Humanos , Butanóis , Espectroscopia de Infravermelho com Transformada de Fourier , Antioxidantes/química , Antibacterianos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/análise , Hipoglicemiantes/farmacologia , Derivados da Morfina , Extratos Vegetais/química
3.
Chemosphere ; 353: 141565, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423145

RESUMO

The growing global population has led to a heightened need for food production, and this rise in agricultural activity is closely tied to the application of phosphorus-based fertilizers, which contributes to the depletion of rock phosphate (RP) reserves. Considering the limited P reserves, different approaches were conducted previously for P removal from waste streams, while the adsorption of ions is a novel strategy with more applicability. In this study, a comprehensive method was employed to recover phosphorus from wastewater by utilizing biochar engineered with minerals such as calcium, magnesium, and iron. Elemental analysis of the wastewater following a batch experiment indicated the efficiency of the engineered biochar as an adsorbent. Subsequently, the phosphorus-enriched biochar, hereinafter (PL-BCsb), obtained from the wastewater, underwent further analysis through FTIR, XRD, and nutritional assessments. The results revealed that the PL-BCsb contained four times higher (1.82%) P contents which further reused as a fertilizer supplementation for Brassica napus L growth. PL-BCsb showed citric acid (34.03%), Olsen solution (10.99%), and water soluble (1.74%) P desorption. Additionally, phosphorous solubilizing bacteria (PSB) were incorporated with PL-BCsb along two P fertilizer levels P45 (45 kg ha-1) and P90 (90 kg ha-1) for evaluation of phosphorus reuse efficiency. Integrated application of PL-BCsb with half of the suggested amount of P45 (45 kg ha-1) and PSB increased growth, production, physiological, biochemical, and nutritional qualities of canola by almost two folds when compared to control. Similarly, it also improved soil microbial biomass carbon up to four times, alkaline and acid phosphatases activities both by one and half times respectively as compared to control P (0). Furthermore, this investigation demonstrated that waste-to-fertilizer technology enhanced the phosphorus fertilizer use efficiency by 55-60% while reducing phosphorus losses into water streams by 90%. These results have significant implications for reducing eutrophication, making it a promising approach for mitigating environmental pollution and addressing climate change.


Assuntos
Brassica napus , Fósforo , Fósforo/análise , Águas Residuárias , Fertilizantes/análise , Fosfatos/química , Bactérias , Carvão Vegetal/química , Solo/química , Nutrientes/análise , Água/análise
4.
Inflammopharmacology ; 31(6): 3081-3100, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37266813

RESUMO

Populus ciliata (PCCR) is traditionally used to treat muscular swelling, inflammation, pain, and fever. The current study was designed to validate the potential of aqueous ethanolic extract of the plant against inflammation, peripheral neuropathy, and pain in arthritic rats. The PCCR was chemically characterized by gas chromatography-mass spectroscopy and high-performance liquid chromatography. In vitro antioxidant, and in vitro anti-inflammatory assays were carried out on PCCR. For anti-arthritic potential, Wistar rats' rear paws were injected with 0.1 ml Complete Freund's Adjuvant using methotrexate (3 mg/kg/week) as standard control. PCCR at 100, 200, and 400 mg/kg was given orally to arthritic rats for 21 days. The PCCR exhibited significant inhibition of bovine serum albumin denaturation (IC-50: 202.1 µg/ml), egg albumin denaturation (IC-50:553.5 mg/ml) and RBC membrane stabilization (IC-50: 122.5 µg/ml) and antioxidant (IC-50 = 49.43 µg/ml) activities. The PCCR notably decreased the paw diameter and increased body weight of treated arthritic animals as equated to diseased control. The treatment notably (p < 0.05-0.0001) decreased malondialdehyde, and increased superoxide dismutase, reduced glutathione, and catalase in the liver and sciatic nerve homogenate in compared to diseased rats. The PCCR treatment remarkably (p < 0.05-0.0001) regulated the levels of nor-adrenaline and serotonin in sciatic nerve in contrast to diseased rats. Treatment with PCCR improved the motor activity, pain, ligament degeneration, and synovial hyperplasia in arthritic rats. Moreover, PCCR significantly (p < 0.01-0.0001) decreased the IL-6 and TNF-α. It is evident from the current study that PCCR had ameliorated polyarthritis and peripheral neuropathy through reduction of inflammatory markers, and improvement of oxidative stress might be due to presence of phenolic acids, flavonoids, phytosterols, and other fatty acids.


Assuntos
Artrite Experimental , Cilióforos , Doenças do Sistema Nervoso Periférico , Populus , Ratos , Animais , Ratos Wistar , Antioxidantes/farmacologia , Ratos Sprague-Dawley , Artrite Experimental/induzido quimicamente , Inflamação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Dor
5.
Molecules ; 28(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37110533

RESUMO

Zero-valent iron nanoparticles (ZVI-NPs) are utilized for the indemnification of a wide range of environmental pollutants. Among the pollutants, heavy metal contamination is the major environmental concern due to their increasing prevalence and durability. In this study, heavy metal remediation capabilities are determined by the green synthesis of ZVI-NPs using aqueous seed extract of Nigella sativa which is a convenient, environmentally friendly, efficient, and cost-effective technique. The seed extract of Nigella sativa was utilized as a capping and reducing agent for the generation of ZVI-NPs. UV-visible spectrophotometry (UV-vis), scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX), and Fourier transform infrared spectroscopy (FTIR) was used to investigate the ZVI-NP composition, shape, elemental constitution, and perspective functional groups, respectively. The biosynthesized ZVI-NPs displayed a peak of plasmon resonance spectra at 340 nm. The synthesized NPs were cylindrical in shape, with a size of 2 nm and (-OH) hydroxyl, (C-H) alkanes and alkynes N-C, N=C, C-O, =CH functional groups attached to the surface of ZVI-NPs. Heavy metals were successfully remediated from industrial wastewater collected from the various tanneries of Kasur. During the reaction duration of 24 h, different concentrations of ZVI-NPs (10 µg, 20 µg and 30 µg) per 100 mL were utilized for the removal of heavy metals from industrial wastewater. The 30 µg/100 mL of ZVI-NPs proved the pre-eminent concentration of NPs as it removed >90% of heavy metals. The synthesized ZVI-NPs were analyzed for compatibility with the biological system resulting in 87.7% free radical scavenging, 96.16% inhibition of protein denaturation, 60.29% and 46.13% anti-cancerism against U87-MG and HEK 293 cell lines, respectively. The physiochemical and exposure mathematical models of ZVI-NPs represented them as stable and ecofriendly NPs. It proved that biologically synthesized NPs from a seed tincture of Nigella sativa have a strong potential to indemnify heavy metals found in industrial effluent samples.


Assuntos
Nanopartículas Metálicas , Metais Pesados , Nigella sativa , Humanos , Ferro/química , Águas Residuárias , Células HEK293 , Metais Pesados/química , Extratos Vegetais , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Molecules ; 27(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500601

RESUMO

Medicinal plants have played an essential role in the treatment of various diseases. Thymus vulgaris, a medicinal plant, has been extensively used for biological and pharmaceutical potential. The current study was performed to check the biopotential of active biological compounds. The GC-MS analysis identified 31 compounds in methanolic crude extract, among which thymol, carvacrol, p-cymene, and eugenol are the main phytoconstituents present in T. vulgaris. The HPLC analysis quantified that flavonoids and phenolic acids are present in a good concentration in the active fraction of ethyl acetate and n-butanol. FTIR confirmed the presence of functional groups such as phenols, a carboxylic group, hydroxy group, alcohols, and a benzene ring. Among both fractions, ethyl acetate showed high antioxidant activity in the DPPH (84.1 0.88) and ABTS (87.1 0.89) assays, respectively. The anti-inflammatory activity of the fractions was done in vitro and in vivo by using a carrageenan-induced paw edema assay, while the hexane-based extract showed high anti-inflammatory activity (57.1 0.54) in a dose-response manner. Furthermore, the lead compound responsible for inhibition in the denaturation of proteins is thymol, which exhibits the highest binding affinity with COX1 (-6.4 KJ/mol) and COX2 (-6.3 KJ/mol) inflammatory proteins. The hepatotoxicity analysis showed that plant-based phytoconstituents are safe to use and have no toxicity, with no necrosis, fibrosis, and vacuolar degeneration, even at a high concentration of 800 mg/kg body weight. Furthermore, the in silico analysis of HPLC phytochemical compounds against gastric cancer genes showed that chlorogenic acid exhibited anticancer activity and showed good drug-designing characteristics. Thrombolysis and hemolysis are the major concerns of individuals suffering from gastric cancer. However, the T. vulgaris fractions showed thrombolysis from 17.6 to 5.4%; similarly, hemolysis ranged from 9.73 to 7.1% at a concentration of 12 mg/mL. The phytoconstituents present in T. vulgaris have the potential for multiple pharmacological applications. This should be further investigated to isolate bioactive compounds that can be used for the treatment of different ailments.


Assuntos
Plantas Medicinais , Neoplasias Gástricas , Thymus (Planta) , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais/química , Neoplasias Gástricas/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Plantas Medicinais/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Ciclo-Oxigenase 2
7.
Antioxidants (Basel) ; 11(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36290639

RESUMO

Selenium nanoparticles (SeNPs) can be produced by biogenic, physical, and chemical processes. The physical and chemical processes have hazardous effects. However, biogenic synthesis (by microorganisms) is an eco-friendly and economical technique that is non-toxic to human and animal health. The mechanism for biogenic SeNPs from microorganisms is still not well understood. Over the past two decades, extensive research has been conducted on the nutritional and therapeutic applications of biogenic SeNPs. The research revealed that biogenic SeNPs are considered novel competitors in the pharmaceutical and food industries, as they have been shown to be virtually non-toxic when used in medical practice and as dietary supplements and release only trace amounts of Se ions when ingested. Various pathogenic and probiotic/nonpathogenic bacteria are used for the biogenic synthesis of SeNPs. However, in the case of biosynthesis by pathogenic bacteria, extraction and purification techniques are required for further useful applications of these biogenic SeNPs. This review focuses on the applications of SeNPs (derived from probiotic/nonpathogenic organisms) as promising anticancer agents. This review describes that SeNPs derived from probiotic/nonpathogenic organisms are considered safe for human consumption. These biogenic SeNPs reduce oxidative stress in the human body and have also been shown to be effective against breast, prostate, lung, liver, and colon cancers. This review provides helpful information on the safe use of biogenic SeNPs and their economic importance for dietary and therapeutic purposes, especially as anticancer agents.

8.
ACS Appl Mater Interfaces ; 14(31): 36019-36026, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35912417

RESUMO

The remarkable potential of metasurface holography promises revolutionary advancements for imaging, chip-integrated augmented/virtual reality (AR/VR) technology, and flat optical displays. The choice of constituent element geometry constrains many potential applications purveyed through polarization-independent optical response. The limited capabilities and degree of freedoms in commonly used meta-atoms restrict the design flexibility to break the conventional trade-off between polarization-insensitivity and bandwidth. Here, we propose a geometric phase-enabled novel design strategy to break this conventional trade-off. The proposed strategy ensures the realization of broad-band polarization-insensitivity through a simplified design procedure. An identical output wavefront manipulation is achieved by adjusting the phase delay freedom of geometric phase engineering under different incident polarization conditions. For proof of concept, a metahologram device is fabricated by an optimized complementary metal-oxide-semiconductor (CMOS)-compatible material of hydrogenated amorphous silicon (a-Si:H). This metahologram device reproduces the required hologram with high image fidelity and efficiency under different polarization scenarios of white light incidence. Due to the simple design strategy, low computational cost, and easy fabrication, the proposed technique can be an excellent candidate for realizing polarization-insensitive metahologram devices.

9.
Molecules ; 27(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807470

RESUMO

In this study, the antibacterial and antifungal properties of silver nanoparticles synthesized with the aqueous plant extract of Acer oblongifolium leaves were defined using a simplistic, environmentally friendly, reliable, and cost-effective method. The aqueous plant extract of Acer oblongifolium, which served as a capping and reducing agent, was used to biosynthesize silver nanoparticles. UV visible spectroscopy, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and scanning electron microscopy were used to analyze the biosynthesized Acer oblongifolium silver nanoparticles (AgNPs). Gram-positive bacteria (Bacillus paramycoides and Bacillus cereus) and Gram-negative bacteria (E. coli) were used to test the AgNPs' antibacterial activity. The presence of different functional groups was determined by FTIR. The AgNPs were rod-like in shape. The nanoparticles were more toxic against Escherichiacoli than both Bacillus cereus and Bacillus paramycoides. The AgNPs had IC50 values of 6.22 and 9.43 and mg/mL on HeLa and MCF-7, respectively, proving their comparatively strong potency against MCF-7. This confirmed that silver nanoparticles had strong antibacterial activity and antiproliferative ability against MCF-7 and HeLa cell lines. The mathematical modeling revealed that the pure nanoparticle had a high heat-absorbing capacity compared to the mixed nanoparticle. This research demonstrated that the biosynthesized Acer oblongifolium AgNPs could be used as an antioxidant, antibacterial, and anticancer agent in the future.


Assuntos
Acer , Bacillus , Nanopartículas Metálicas , Antibacterianos , Escherichia coli , Células HeLa , Humanos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Folhas de Planta/química , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
10.
Biomed Pharmacother ; 149: 112834, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35339108

RESUMO

Cassia plants have a considerable position in conventional systems of medicine. The possible anti-nociceptive, anti-inflammatory, and anti-neuropathic properties of Cassia artemisiodes (CAD) extract were tested using the standard animal models. In this study, in vitro antioxidant, cyclooxygenase (COX-1 and 2), and 5-lipoxygenase (5-LOX) inhibitory assays were performed. The anti-inflammatory activity was evaluated using carrageenan, histamine, and serotonin-induced paw edema models. Antipyretic activity, thermally and chemically-induced nociception, and naloxone antagonistic activities were carried out. The CAD extract was tested for anti-neuropathic activity in the streptozotocin-induced diabetic neuropathy model. Suppressing the effect of CAD extract on the mRNA level of inducible nitric oxide synthase (iNOS), COX-2, and pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6) was determined by performing RT-PCR. The CAD extract inhibited COX-2 and 5-LOX enzymes, paw inflammation, and reduced nociceptive behaviors. The mRNA gene expression of iNOS, COX-2, and inflammatory cytokines was reduced significantly with increased DPPH scavenging activity. The extract significantly reduced the diabetes-induced neuropathic pain. In a nutshell, these results recommended that the CAD extract has anti-nociceptive and anti-neuropathic activities due to inhibition of inflammatory and oxidative signaling.


Assuntos
Cassia , Diabetes Mellitus , Neuropatias Diabéticas , Neuralgia , Analgésicos/efeitos adversos , Animais , Anti-Inflamatórios/efeitos adversos , Antioxidantes/uso terapêutico , Carragenina/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Edema/tratamento farmacológico , Neuralgia/tratamento farmacológico , Nociceptividade , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , RNA Mensageiro/uso terapêutico
11.
Ir J Med Sci ; 191(2): 719-725, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33999383

RESUMO

BACKGROUND: Statins can trigger a series of muscle-related adverse events, commonly referred to collectively as statin-induced myopathy. Although coenzyme Q10 (CoQ10) is widely used as a supplement in statin therapy, there is little clinical evidence for this practice. AIM: This study aims to assess the effect of adding CoQ10 on statin-induced myopathy. METHODS: Searching the PubMed, EMBASE, and the Cochrane Library databases to identify randomized controlled trials investigating the effect of adding CoQ10 on creatine kinase (CK) activity and degree of muscle pain as two indicators of statin-induced myopathy. Two reviewers will independently extract data from the included articles. RESULTS: Study screening included a randomized controlled trial of oral CoQ10 versus placebo in patients with statin-induced myopathy. We had a total of 8 studies in which 472 patients were treated with statins: 6 studies with 281 participants assessed the impact of adding CoQ10 on CK activity, and 4 studies with 220 participants were included to evaluate the impacts of CoQ10 addition on muscle pain. Compared with the controls, CK activity increased after adding CoQ10, but the change was not significant (mean difference, 3.29 U/L; 95% CI, - 29.58 to 36.17 U/L; P = 0.84). Similarly, the meta-analysis did not benefit CoQ10 over placebo in improving muscle pain (standardized mean difference, - 0.59; 95% CI, - 1.54 to 0.36; P = 0.22). CONCLUSION: The outcomes of this meta-analysis of existing randomized controlled trials showed that supplementation with CoQ10 did not have any significant benefit in improving statin-induced myopathy.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Doenças Musculares , Suplementos Nutricionais , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Doenças Musculares/induzido quimicamente , Doenças Musculares/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Ubiquinona/análogos & derivados
12.
Biomed Pharmacother ; 146: 112550, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34959116

RESUMO

Coronavirus is a family of viruses that can cause diseases such as the common cold, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). The universal outbreak of coronavirus disease 2019 (COVID-19) caused by SARS coronaviruses 2 (SARS-CoV-2) has become a global pandemic. The ß-Coronaviruses, which caused SARS-CoV-2 (COVID-19), have spread in more than 213 countries, infected over 81 million people, and caused more than 1.79 million deaths. COVID-19 symptoms vary from mild fever, flu to severe pneumonia in severely ill patients. Difficult breathing, acute respiratory distress syndrome (ARDS), acute kidney disease, liver damage, and multi-organ failure ultimately lead to death. Researchers are working on different pre-clinical and clinical trials to prevent this deadly pandemic by developing new vaccines. Along with vaccines, therapeutic intervention is an integral part of healthcare response to address the ongoing threat posed by COVID-19. Despite the global efforts to understand and fight against COVID-19, many challenges need to be addressed. This article summarizes the current pandemic, different strains of SARS-CoV-2, etiology, complexities, surviving medications of COVID-19, and so far, vaccination for the treatment of COVID-19.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/genética , Variação Genética/genética , SARS-CoV-2/genética , Vacinação/tendências , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/genética , Antivirais/administração & dosagem , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Surtos de Doenças/prevenção & controle , Humanos , Medicina Tradicional Chinesa/tendências , Vacinação/métodos , Tratamento Farmacológico da COVID-19
13.
Dose Response ; 19(4): 15593258211058028, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867126

RESUMO

The current study was aimed to analyze the therapeutic effect of selected medicinal plants, that is, Curcuma longa, Zingiber officinale, Trigonella graceum-foenum, Nigella sativa, and Syzygium aromaticum against carrageenan-induced oxidative stress and inflammation in rats. Phytochemical analysis revealed the presence of diverse range of bioactives. IC50 values for antioxidant assays including DPPH (2,2-diphenyl-1-picrylhydrazyl), metal chelating, ABTS scavenging (2, 2'-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic Acid), ß-carotene bleaching, and H2O2 (hydrogen peroxide) scavenging ranged from 37-294, 71-243.4, 69.66-191.8, 98.92-228.5, and 82-234.9 µg/mL, respectively. All tested plants extract were found active against tested pathogenic microorganisms with lowest minimum inhibitory concentrations. Oral administration of tested plants extracts in different doses (250, 500, and 1000 mg/kg b. w) did not exhibit any toxicological effects on hemato-biochemical profile of treated rats in comparison to control group rats. Further, plants extract exhibited considerable anti-inflammatory activity in rats paw inflammation and decreased cellular infiltration to inflammatory site in dose dependent manner. Pretreatment of animals with tested plants extract (100, 200, and 400 mg/kg b. w.) caused significant alteration in total antioxidants, oxidants, and enzymes activities in paw tissue homogenate and the effect was more pronounced at higher concentration (400 mg/kg b. w.). Results showed that tested plants extract are rich source of diverse classes of phenolics and have therapeutic potential against oxidative stress and inflammation.

14.
Biomed Pharmacother ; 143: 112164, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649335

RESUMO

Resveratrol (RV) is a well-known polyphenolic compound in various plants, including grape, peanut, and berry fruits, which is quite famous for its association with several health benefits such as anti-obesity, cardioprotective neuroprotective, antitumor, antidiabetic, antioxidants, anti-age effects, and glucose metabolism. Significantly, promising therapeutic properties have been reported in various cancer, neurodegeneration, and atherosclerosis and are regulated by several synergistic pathways that control oxidative stress, cell death, and inflammation. Similarly, RV possesses a strong anti-adipogenic effect by inhibiting fat accumulation processes and activating oxidative and lipolytic pathways, exhibiting their cardioprotective effects by inhibiting platelet aggregation. The RV also shows significant antibacterial effects against various food-borne pathogens (Listeria, Campylobacter, Staphylococcus aureus, and E. coli) by inhibiting an electron transport chain (ETC) and F0F1-ATPase, which decreases the production of cellular energy that leads to the spread of pathogens. After collecting and analyzing scientific literature, it may be concluded that RV is well tolerated and favorably affects cardiovascular, neurological, and diabetic disorders. As such, it is possible that RV can be considered the best nutritional additive and a complementary drug, especially a therapeutic candidate. Therefore, this review would increase knowledge about the blend of RV as well as inspire researchers around the world to consider RV as a pharmaceutical drug to combat future health crises against various inhumane diseases. In the future, this article will be aware of discoveries about the potential of this promising natural compound as the best nutraceuticals and therapeutic drugs in medicine.


Assuntos
Suplementos Nutricionais , Compostos Fitoquímicos/uso terapêutico , Resveratrol/uso terapêutico , Animais , Suplementos Nutricionais/efeitos adversos , Humanos , Segurança do Paciente , Compostos Fitoquímicos/efeitos adversos , Compostos Fitoquímicos/farmacocinética , Resveratrol/efeitos adversos , Resveratrol/farmacocinética , Medição de Risco
15.
Molecules ; 26(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577029

RESUMO

Among the trace elements, selenium (Se) has great demand as a health supplement. Compared to its other forms, selenium nanoparticles have minor toxicity, superior reactivity, and excellent bioavailability. The present study was conducted to produce selenium nanoparticles (SeNPs) via a biosynthetic approach using probiotic Bacillus subtilis BSN313 in an economical and easy manner. The BSN313 exhibited a gradual increase in Se reduction and production of SeNPs up to 5-200 µg/mL of its environmental Se. However, the capability was decreased beyond that concentration. The capacity for extracellular SeNP production was evidenced by the emergence of red color, then confirmed by a microscopic approach. Produced SeNPs were purified, freeze-dried, and subsequently characterized systematically using UV-Vis spectroscopy, FTIR, Zetasizer, SEM-EDS, and TEM techniques. SEM-EDS analysis proved the presence of selenium as the foremost constituent of SeNPs. With an average particle size of 530 nm, SeNPs were shown to have a -26.9 (mV) zeta potential and -2.11 µm cm/Vs electrophoretic mobility in water. SeNPs produced during both the 24 and 48 h incubation periods showed good antioxidant activity in terms of DPPH and ABST scavenging action at a concentration of 150 µg/mL with no significant differences (p > 0.05). Moreover, 200 µg/mL of SeNPs showed antibacterial reactivity against Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 9027, and Pseudomonas aeruginosa ATCC 25923. In the future, this work will be helpful to produce biogenic SeNPs using probiotic Bacillus subtilis BSN313 as biofactories, with the potential for safe use in biomedical and nutritional applications.


Assuntos
Bacillus subtilis , Nanopartículas , Selênio , Antioxidantes , Suplementos Nutricionais , Tamanho da Partícula
16.
Front Plant Sci ; 12: 707061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497622

RESUMO

Alpinia zerumbet (Zingiberaceae) is a unique ornamental and medicinal plant primarily used in food ingredients and traditional medicine. While organic amendments such as biochar (BC) and compost (Co) have been demonstrated to improve plant productivity, no studies have examined their effects on the growth, physiology, and secondary metabolites of A. zerumbet. This study evaluated the impact of the amendment of BC, Co, or a biochar and compost mixture (BC+Co) on modifying and improving the growth, photosynthesis, antioxidant status, and secondary metabolism of A. zerumbet grown on sandy loam soil. The morpho-physiological and biochemical investigation revealed variation in the response of A. zerumbet to organic amendments. The amendment of BC and BC+Co significantly increased net photosynthetic rates of plants by more than 28%, chlorophyll a and b contents by 92 and 78%, respectively, and carboxylation efficiency by 50% compared with those grown in the sandy loam soil without amendment. Furthermore, the amendment significantly decreased plant oxidative stress, measured as leaf free proline and glycine betaine. Enzymatic antioxidant activity, total phenols, and flavonoids also varied in their response to the organic amendments. In conclusion, this study shows that BC and/or Co amendments are an efficient and sustainable method for improving the metabolite contents and reducing oxidative stress in A. zerumbet.

17.
Environ Res ; 197: 111031, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33744268

RESUMO

Extraction and exploration of petroleum hydrocarbons (PHs) to satisfy the rising world population's fossil fuel demand is playing havoc with human beings and other life forms by contaminating the ecosystem, particularly the soil. In the current review, we highlighted the sources of PHs contamination, factors affecting the PHs accumulation in soil, mechanisms of uptake, translocation and potential toxic effects of PHs on plants. In plants, PHs reduce the seed germination andnutrients translocation, and induce oxidative stress, disturb the plant metabolic activity and inhibit the plant physiology and morphology that ultimately reduce plant yield. Moreover, the defense strategy in plants to mitigate the PHs toxicity and other potential remediation techniques, including the use of organic manure, compost, plant hormones, and biochar, and application of microbe-assisted remediation, and phytoremediation are also discussed in the current review. These remediation strategies not only help to remediate PHs pollutionin the soil rhizosphere but also enhance the morphological and physiological attributes of plant and results to improve crop yield under PHs contaminated soils. This review aims to provide significant information on ecological importance of PHs stress in various interdisciplinary investigations and critical remediation techniques to mitigate the contamination of PHs in agricultural soils.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Ecossistema , Humanos , Hidrocarbonetos/toxicidade , Petróleo/toxicidade , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
18.
Front Pharmacol ; 12: 791049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35145403

RESUMO

Health consciousness and increased knowledge about the side effects of synthetic drugs have enhanced interest in traditional medicines. Medicinal plants offer cures for various diseases, leading to improved living standards. This has brought ethnomedicinal studies into the spotlight and increased demand for herb-based medicines. Citrullus colocynthis is an herbaceous plant containing an abundance of nutrients that play a key role in the improvement of wellbeing. C. colocynthis has many biological properties, such as antioxidative, hypoglycemic, antibacterial, anti-cancerous, anti-inflammatory, analgesic, gastrointestinal tract, reproduction, protection, anti-microbial, antidiabetic, hypolipidemic, antineoplastic, profibrinolytic, anti-allergic, pesticidal, and immune-stimulatory. There are numerous bioactive compounds like cucurbitacin, flavonoids, and polyphenols in C. colocynthis that give it medicinal properties. Herein, we have extensively compiled, reviewed, and analyzed significant information on C. colocynthhis from the best published available evidence in PubMed, Scopus (Embase), Web of Science (Web of Knowledge), Cochrane Library, and Google Scholar, etc. Scientific literature evidenced that owing to the bioactive constituents, including cucurbitacin, polyphenols, flavonoids, and other potent molecules, C. colocynthis has many pharmacological and physiological functions. It possesses multi-beneficial applications in treating various disorders of humans and animals. So, the primary purpose of this comprehensive review is to provide an overview of the findings of positive impacts and risks of C. colocynthis consumption on human health, especially in poultry and veterinary fields. In the future, this narrative article will be aware of discoveries about the potential of this promising natural fruit and its bioactive compounds as the best nutraceuticals and therapeutic drugs in veterinary and human medicine.

19.
Nutrients ; 14(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35011050

RESUMO

Metabolic syndrome (MetS) is a combination of physiologically dysregulated parameters that can include elevated fasting blood glucose, high blood pressure, central obesity, increased triglyceride levels, insulin resistance, diabetes, elevated low density lipoprotein levels, and reduced high density lipoprotein levels in the blood. Effective clinical management of MetS is critical as it is strongly associated with long lasting and fatal complications in patients. Alongside standard care of lifestyle changes and medication, dietary supplements derived from herbal resources could be an alternative therapeutic strategy that is safe, efficient, culturally acceptable, and has few side effects. Of the dietary supplements, spicy foods have always been considered a great source of functional bioactive compounds. Herbal therapy is broadly used in many countries as a treatment or as a preventive measure in the management of MetS risk factors, including blood glucose, blood pressure, and blood lipid levels. Herein, an attempt is made to evaluate the recent studies in the management of MetS with herbal alternatives, and to explore the possibility of their use as therapeutic treatments or supplements.


Assuntos
Suplementos Nutricionais , Síndrome Metabólica/dietoterapia , Compostos Fitoquímicos/administração & dosagem , Fitoterapia , Especiarias/análise , Glicemia/metabolismo , Feminino , Humanos , Lipoproteínas HDL/sangue , Lipoproteínas LDL/sangue , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/prevenção & controle , Triglicerídeos/sangue
20.
Biomed Pharmacother ; 132: 110918, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254434

RESUMO

The plant kingdom is a rich source of bioactive compounds, many of which have been used since pre-history for their therapeutic properties to treat a range of illnesses. These metabolites have recently attracted attention to their antineoplastic activities to treat various cancers relying on different mechanisms. Some of these molecules are glycosides, which have proven useful as anti-cancer agents, namely podophyllotoxin (PPT) anaryltetralin lignan or alkaloids. There are three primary forms of alkaloids, such as indole alkaloids (vincristine and vinblastine from Catharanthus roseus), quinoline alkaloid (camptothecin from Camptotheca acuminata), and diterpenoid alkaloid (taxol and it's analogous from Taxus and Corylus species). This review considers various plant biotechnology approaches used to enhance the production of these anticancer molecules in different species. In this regard, many in vitro culture techniques such as stimulation of suspension culture and hairy roots are being used to investigate the effects of plant growth regulators and elicitors on various explants.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Biotecnologia/métodos , Neoplasias/tratamento farmacológico , Plantas Medicinais , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/uso terapêutico , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Biotecnologia/tendências , Humanos , Lignanas/química , Lignanas/isolamento & purificação , Lignanas/uso terapêutico , Paclitaxel/química , Paclitaxel/isolamento & purificação , Paclitaxel/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA