Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 699: 134330, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31522043

RESUMO

Rice is one of the principal staple foods, essential for safeguarding the global food and nutritional security, but due to different natural and anthropogenic sources, it also acts as one of the biggest reservoirs of potentially toxic metal(loids) like As, Hg, Se, Pb and Cd. This review summarizes mobilization, translocation and speciation mechanism of these metal(loids) in soil-plant continuum as well as available cost-effective remediation measures and future research needs to eliminate the long-term risk to human health. High concentrations of these elements not only cause toxicity problems in plants, but also in animals that consume them and gradual deposition of these elements leads to the risk of bioaccumulation. The extensive occurrence of contaminated rice grains globally poses substantial public health risk and merits immediate action. People living in hotspots of contamination are exposed to higher health risks, however, rice import/export among different countries make the problem of global concern. Accumulation of As, Hg, Se, Pb and Cd in rice grains can be reduced by reducing their bioavailability, and controlling their uptake by rice plants. The contaminated soils can be reclaimed by phytoremediation, bioremediation, chemical amendments and mechanical measures; however these methods are either too expensive and/or too slow. Integration of innovative agronomic practices like crop establishment methods and improved irrigation and nutrient management practices are important steps to help mitigate the accumulation in soil as well as plant parts. Adoption of transgenic techniques for development of rice cultivars with low accumulation in edible plant parts could be a realistic option that would permit rice cultivation in soils with high bioavailability of these metal(loid)s.


Assuntos
Exposição Dietética/estatística & dados numéricos , Monitoramento Ambiental , Metaloides/análise , Poluentes do Solo/análise , Agricultura , Arsênio/análise , Cádmio/análise , Humanos , Chumbo/análise , Mercúrio/análise , Oryza , Selênio/análise , Solo
2.
Plant Physiol Biochem ; 139: 419-427, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30986643

RESUMO

Oxidative stress generates reactive oxygen species which causes cell damage of living organisms and are normally detoxified by antioxidants. Indirect reports signify the damages caused by reactive oxygen species and neutralized by antioxidant, but the direct evidence to confirm this hypothesis is still unclear. To validate our hypothesis, an attempt was made in a diazotrophic bacterium (Azotobacter chroococcum Avi2) as a biological system, and hydrogen peroxide (H2O2) and ascorbic acid were used as oxidative stress and antioxidant supplement, respectively. Additionally, rice plant-growth attributes by Avi2 was also assessed under H2O2 and ascorbic acid. Results indicated that higher concentration of H2O2 (2.5 mM-4.5 mM) showed the complete mortality of Avi2, whereas one ppm ascorbic acid neutralized the effect of H2O2. Turbidity, colony forming unit, DNA quantity, nifH gene abundance, indole acetic acid and ammonia productions were significantly (p < 0.5) increased by 11.93%, 17.29%, 19.80%, 74.77%, 71.89%, and 42.53%, respectively in Avi2-treated with 1.5 mM H2O2 plus ascorbic acid compared to 1.5 mM H2O2 alone. Superoxide dismutase was significantly (p < 0.5) increased by 60.85%, whereas catalase and ascorbate peroxidase activities were significantly (p < 0.05) decreased by 64.28% and 68.88% in Avi2-treated with 1.5 mM H2O2 plus ascorbic acid compared to 1.5 mM H2O2 alone. Germination percentage of three rice cultivars (FR13a, Naveen and Sahbhagi dhan) were significantly (p < 0.5) increased by 20%, 13.33%, and 4%, respectively in Avi2-treated with 0.6 mM H2O2 plus ascorbic acid compared with uninoculated control. Overall, this study indicated that ascorbic acid formulation neutralizes the H2O2-oxidative stress and enhances the survivability and plant growth-promoting efficacy of A. chroococcum Avi2 and therefore, it may be used as an effective formulation of bio-inoculants in rice under oxidative stress.


Assuntos
Ácido Ascórbico/farmacologia , Azotobacter/fisiologia , Fixação de Nitrogênio/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Antioxidantes , Peróxido de Hidrogênio/farmacologia , Fixação de Nitrogênio/fisiologia , Oryza/metabolismo , Estresse Oxidativo/efeitos dos fármacos
3.
Chemosphere ; 76(3): 353-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19394675

RESUMO

A pot experiment was carried out under controlled condition to investigate the accumulation, uptake and toxicity effects of fluoride (F) in onion (Allium cepa L.) grown on the soil contaminated by inorganic fluoride (NaF). Six different levels of soil contamination were used by adding 0, 100, 200, 400, 600 and 800 mg NaFkg(-1) to the soil. The F concentration in shoot, bulb and root varied between 16.3 and 109.1mg Fkg(-1), 15.8 and 54.3mg Fkg(-1) and 18.6 and 151.6 mg Fkg(-1), respectively. The visible symptoms of F toxicity in terms of tip burning and death of the plant was noticed in highly contaminated soils (>400mg NaFkg(-1) soil). The phyto-toxic threshold limit (LC(50)) in onion shoot was found to be 55 mg Fkg(-1), beyond which the biomass yield decreased by 50%. It was also inferred from the study that there is a partitioning of F in onion, with more accumulation in roots and shoots than in bulbs. The order of retention of fluoride in onion found to be roots>shoot>bulb.


Assuntos
Fluoretos/toxicidade , Cebolas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solo , Biomassa , Fluoretos/análise , Cebolas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA