Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 4137, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914703

RESUMO

Obesity affects millions of people worldwide and is associated with an increased risk of cognitive decline. The glymphatic system is a brain-wide metabolic waste clearance system, dysfunction of which is linked to dementia. We herein examined glymphatic transport in mice with long-term obesity induced by a high-fat diet for 10 months. The obese mice developed hypertension and elevated heart rate, neuroinflammation and gliosis, but not apparent systemic inflammation. Surprisingly, glymphatic inflow was globally unaffected by the high-fat diet except for the hypothalamus, which displayed increased influx and elevated AQP4 vascular polarization compared to the normal weight control group. We propose that a long-term high-fat diet induced metabolic alteration of hypothalamic neurons and neuroinflammation, which in turn enhanced glymphatic clearance in the effected brain region.


Assuntos
Dieta Hiperlipídica , Doenças Neuroinflamatórias , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Encéfalo/fisiologia , Hipotálamo/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Camundongos Endogâmicos C57BL
2.
Nat Neurosci ; 22(2): 317-327, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30598527

RESUMO

Analysis of entire transparent rodent bodies after clearing could provide holistic biological information in health and disease, but reliable imaging and quantification of fluorescent protein signals deep inside the tissues has remained a challenge. Here, we developed vDISCO, a pressure-driven, nanobody-based whole-body immunolabeling technology to enhance the signal of fluorescent proteins by up to two orders of magnitude. This allowed us to image and quantify subcellular details through bones, skin and highly autofluorescent tissues of intact transparent mice. For the first time, we visualized whole-body neuronal projections in adult mice. We assessed CNS trauma effects in the whole body and found degeneration of peripheral nerve terminals in the torso. Furthermore, vDISCO revealed short vascular connections between skull marrow and brain meninges, which were filled with immune cells upon stroke. Thus, our new approach enables unbiased comprehensive studies of the interactions between the nervous system and the rest of the body.


Assuntos
Meninges/diagnóstico por imagem , Neurônios/metabolismo , Crânio/diagnóstico por imagem , Imagem Corporal Total/métodos , Animais , Meninges/metabolismo , Camundongos , Camundongos Transgênicos , Crânio/metabolismo
3.
Glia ; 62(4): 608-22, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24482245

RESUMO

Network activity in the brain is associated with a transient increase in extracellular K(+) concentration. The excess K(+) is removed from the extracellular space by mechanisms proposed to involve Kir4.1-mediated spatial buffering, the Na(+)/K(+)/2Cl(-) cotransporter 1 (NKCC1), and/or Na(+)/K(+)-ATPase activity. Their individual contribution to [K(+)]o management has been of extended controversy. This study aimed, by several complementary approaches, to delineate the transport characteristics of Kir4.1, NKCC1, and Na(+)/K(+)-ATPase and to resolve their involvement in clearance of extracellular K(+) transients. Primary cultures of rat astrocytes displayed robust NKCC1 activity with [K(+)]o increases above basal levels. Increased [K(+)]o produced NKCC1-mediated swelling of cultured astrocytes and NKCC1 could thereby potentially act as a mechanism of K(+) clearance while concomitantly mediate the associated shrinkage of the extracellular space. In rat hippocampal slices, inhibition of NKCC1 failed to affect the rate of K(+) removal from the extracellular space while Kir4.1 enacted its spatial buffering only during a local [K(+)]o increase. In contrast, inhibition of the different isoforms of Na(+)/K(+)-ATPase reduced post-stimulus clearance of K(+) transients. The astrocyte-characteristic α2ß2 subunit composition of Na(+)/K(+)-ATPase, when expressed in Xenopus oocytes, displayed a K(+) affinity and voltage-sensitivity that would render this subunit composition specifically geared for controlling [K(+)]o during neuronal activity. In rat hippocampal slices, simultaneous measurements of the extracellular space volume revealed that neither Kir4.1, NKCC1, nor Na(+)/K(+)-ATPase accounted for the stimulus-induced shrinkage of the extracellular space. Thus, NKCC1 plays no role in activity-induced extracellular K(+) recovery in native hippocampal tissue while Kir4.1 and Na(+)/K(+)-ATPase serve temporally distinct roles.


Assuntos
Hipocampo/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Animais , Animais Recém-Nascidos , Bumetanida/farmacologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios/farmacologia , Líquido Extracelular/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Oócitos , Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Xenopus laevis
4.
Nat Med ; 19(12): 1643-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24240184

RESUMO

Ammonia is a ubiquitous waste product of protein metabolism that can accumulate in numerous metabolic disorders, causing neurological dysfunction ranging from cognitive impairment to tremor, ataxia, seizures, coma and death. The brain is especially vulnerable to ammonia as it readily crosses the blood-brain barrier in its gaseous form, NH3, and rapidly saturates its principal removal pathway located in astrocytes. Thus, we wanted to determine how astrocytes contribute to the initial deterioration of neurological functions characteristic of hyperammonemia in vivo. Using a combination of two-photon imaging and electrophysiology in awake head-restrained mice, we show that ammonia rapidly compromises astrocyte potassium buffering, increasing extracellular potassium concentration and overactivating the Na(+)-K(+)-2Cl(-) cotransporter isoform 1 (NKCC1) in neurons. The consequent depolarization of the neuronal GABA reversal potential (EGABA) selectively impairs cortical inhibitory networks. Genetic deletion of NKCC1 or inhibition of it with the clinically used diuretic bumetanide potently suppresses ammonia-induced neurological dysfunction. We did not observe astrocyte swelling or brain edema in the acute phase, calling into question current concepts regarding the neurotoxic effects of ammonia. Instead, our findings identify failure of potassium buffering in astrocytes as a crucial mechanism in ammonia neurotoxicity and demonstrate the therapeutic potential of blocking this pathway by inhibiting NKCC1.


Assuntos
Amônia/farmacologia , Astrócitos/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Potássio/metabolismo , Convulsões/induzido quimicamente , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/fisiologia , Ratos , Ratos Wistar , Convulsões/fisiopatologia
5.
J Pain ; 13(12): 1215-23, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23182227

RESUMO

UNLABELLED: Acupuncture is a form of Eastern medicine that has been practiced for centuries. Despite its long history and worldwide application, the biological mechanisms of acupuncture in relieving pain have been poorly defined. Recent studies in mice, however, demonstrate that acupuncture triggers increases in interstitial adenosine, which reduces the severity of chronic pain through adenosine A1 receptors, suggesting that adenosine-mediated antinociception contributes to the clinical benefits of acupuncture. We asked here whether acupuncture in human subjects is also linked to a local increase in interstitial adenosine concentration. We collected microdialysis samples of interstitial fluid before, during, and after delivering 30 minutes of conventional acupuncture in the Zusanli point in human subjects. The interstitial adenosine concentration increased significantly during acupuncture and remained elevated for 30 minutes after the acupuncture. Acupuncture-mediated adenosine release was not observed if acupuncture was not delivered in the Zusanli point or if the acupuncture needle was inserted, but not rotated. This study strengthens the role of adenosine in acupuncture-mediated antinociception by directly providing such evidence in humans. PERSPECTIVE: This article presents further evidence of the role of adenosine in acupuncture-mediated antinociception by demonstrating that local adenosine concentrations increase in the acupoint in human subjects receiving traditional acupuncture.


Assuntos
Terapia por Acupuntura/métodos , Adenosina/biossíntese , Líquido Extracelular/metabolismo , Adenosina/análise , Adulto , Líquido Extracelular/química , Humanos , Masculino , Microdiálise/métodos , Adulto Jovem
6.
Nat Neurosci ; 13(7): 883-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20512135

RESUMO

Acupuncture is an invasive procedure commonly used to relieve pain. Acupuncture is practiced worldwide, despite difficulties in reconciling its principles with evidence-based medicine. We found that adenosine, a neuromodulator with anti-nociceptive properties, was released during acupuncture in mice and that its anti-nociceptive actions required adenosine A1 receptor expression. Direct injection of an adenosine A1 receptor agonist replicated the analgesic effect of acupuncture. Inhibition of enzymes involved in adenosine degradation potentiated the acupuncture-elicited increase in adenosine, as well as its anti-nociceptive effect. These observations indicate that adenosine mediates the effects of acupuncture and that interfering with adenosine metabolism may prolong the clinical benefit of acupuncture.


Assuntos
Analgesia por Acupuntura , Adenosina/metabolismo , Vias Aferentes/metabolismo , Dor/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Receptores Purinérgicos P1/metabolismo , Análise de Variância , Animais , Modelos Animais de Doenças , Camundongos , Nucleotidases/metabolismo , Dor/complicações , Manejo da Dor , Doenças do Sistema Nervoso Periférico/complicações , Doenças do Sistema Nervoso Periférico/terapia , Ciática/complicações , Ciática/metabolismo , Ciática/terapia , Estatísticas não Paramétricas
7.
Nat Med ; 14(1): 75-80, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18157140

RESUMO

Deep brain stimulation (DBS) is a widely used neurosurgical approach to treating tremor and other movement disorders. In addition, the use of DBS in a number of psychiatric diseases, including obsessive-compulsive disorders and depression, is currently being tested. Despite the rapid increase in the number of individuals with surgically implanted stimulation electrodes, the cellular pathways involved in mediating the effects of DBS remain unknown. Here we show that DBS is associated with a marked increase in the release of ATP, resulting in accumulation of its catabolic product, adenosine. Adenosine A1 receptor activation depresses excitatory transmission in the thalamus and reduces both tremor- and DBS-induced side effects. Intrathalamic infusion of A1 receptor agonists directly reduces tremor, whereas adenosine A1 receptor-null mice show involuntary movements and seizure at stimulation intensities below the therapeutic level. Furthermore, our data indicate that endogenous adenosine mechanisms are active in tremor, thus supporting the clinical notion that caffeine, a nonselective adenosine receptor antagonist, can trigger or exacerbate essential tremor. Our findings suggest that nonsynaptic mechanisms involving the activation of A1 receptors suppress tremor activity and limit stimulation-induced side effects, thereby providing a new pharmacological target to replace or improve the efficacy of DBS.


Assuntos
Adenosina/metabolismo , Estimulação Encefálica Profunda , Tremor/terapia , Trifosfato de Adenosina/metabolismo , Animais , Axônios/metabolismo , Cerebelo/metabolismo , Eletrofisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Receptor A1 de Adenosina/metabolismo , Tálamo/metabolismo , Tremor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA