Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(9)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36145715

RESUMO

Alpinia galanga Willd., greater galangal, has been used for thousands of years as a spice as well as in traditional medicine. Its central nervous system (CNS) stimulant activity and neuroprotective effects have been proved both in animal models and human trials. However, the compounds responsible for these effects have not been identified yet. Therefore, the main constituents (p-OH-benzaldehyde (1), trans-p-coumaryl-alcohol (2), p-coumaryl-aldehyde (4), galanganol A (5), galanganol B (6), trans-p-acetoxycinnamyl alcohol (7), 1'S-1'-acetoxychavicol acetate (ACA, 9), and 1'S-1'-acetoxyeugenol acetate (AEA, 10)) were isolated to investigate their aqueous stability and passive diffusion across the gastro-intestinal tract (GIT) membrane and the blood-brain barrier (BBB) by the parallel artificial membrane permeability assay (PAMPA). Our positive results for compounds 1, 2, 4, 7, 9, and 10 suggest good permeability, thus potential contribution to the effects of greater galangal in the CNS. The results of the PAMPA-BBB were corroborated by in silico chemography-based ChemGPS-NP framework experiments. In addition, examination of the chemical space position of galangal compounds in relation to known psychostimulants revealed that all the molecules in proximity are NET/SERT inhibitors. As ACA and AEA did not show much proximity to either compound, the importance of further investigation of their degradation products becomes more pronounced.

2.
J Pharm Biomed Anal ; 191: 113612, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32980795

RESUMO

Celtis occidentalis L. (common Hackberry, Cannabaceae) has been applied in the traditional medicine for a long time as a remedy for sore throat, aid during menstruation and for treating jaundice. Nevertheless, the phytochemical exploration of the plant is still incomplete, literature data is limited to flavonoid derivatives isolated from the leaves. The present study reports screening approaches for bioactive compounds in C. occidentalis by fast and simple UHPLC-coupled assays. The UHPLC-DPPH method revealed six constituents in the methanolic extract of the twigs that had not been reported in C. occidentalis before. The antioxidant compounds were isolated by the means of flash chromatography and semi-preparative HPLC and identified by Orbitrap® MS and NMR spectroscopy as N-trans-p-coumaroyloctopamine (1), N-trans-feruloyloctopamine (2), N-trans-caffeoyltyramine (3), 2-trans-3-(4-hydroxyphenyl)-N-[2-(4-hydroxyphenyl)-2-oxoethyl] prop-2-enamide (4), N-trans-p-coumaroyltryramine (5) and N-trans-feruloyltyramine (6). Despite the high antioxidant activity measured in the present study and literature data suggesting potential positive effects of the compounds in the central nervous system, the PAMPA-BBB assay performed with the Celtis extract revealed that none of the aforementioned compounds are able to penetrate across the blood-brain barrier via transcellular passive diffusion.


Assuntos
Antioxidantes , Extratos Vegetais , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Octopamina , Tiramina , Ulmaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA