Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612680

RESUMO

The central exacerbating factor in the pathophysiology of ischemic-reperfusion acute kidney injury (AKI) is oxidative stress. Lipid peroxidation and DNA damage in ischemia are accompanied by the formation of 3-nitrotyrosine, a biomarker for oxidative damage. DNA double-strand breaks (DSBs) may also be a result of postischemic AKI. γH2AX(S139) histone has been identified as a potentially useful biomarker of DNA DSBs. On the other hand, hypoxia-inducible factor (HIF) is the "master switch" for hypoxic adaptation in cells and tissues. The aim of this research was to evaluate the influence of hyperbaric oxygen (HBO) preconditioning on antioxidant capacity estimated by FRAP (ferric reducing antioxidant power) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assay, as well as on oxidative stress parameter 3-nitrotyrosine, and to assess its effects on γH2AX(S139), HIF-1α, and nuclear factor-κB (NF-κB) expression, in an experimental model of postischemic AKI induced in spontaneously hypertensive rats. The animals were divided randomly into three experimental groups: sham-operated rats (SHAM, n = 6), rats with induced postischemic AKI (AKI, n = 6), and group exposed to HBO preconditioning before AKI induction (AKI + HBO, n = 6). A significant improvement in the estimated glomerular filtration rate, eGFR, in AKI + HBO group (p < 0.05 vs. AKI group) was accompanied with a significant increase in plasma antioxidant capacity estimated by FRAP (p < 0.05 vs. SHAM group) and a reduced immunohistochemical expression of 3-nitrotyrosine and γH2AX(S139). Also, HBO pretreatment significantly increased HIF-1α expression (p < 0.001 vs. AKI group), estimated by Western blot and immunohistochemical analysis in kidney tissue, and decreased immunohistochemical NF-κB renal expression (p < 0.01). Taking all of these results together, we may conclude that HBO preconditioning has beneficial effects on acute kidney injury induced in spontaneously hypertensive rats.


Assuntos
Injúria Renal Aguda , Oxigenoterapia Hiperbárica , Traumatismo por Reperfusão , Animais , Ratos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/terapia , Antioxidantes , Biomarcadores , Dano ao DNA , Rim , NF-kappa B , Estresse Oxidativo , Oxigênio , Ratos Endogâmicos SHR
2.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573145

RESUMO

Renal ischemia and reperfusion (I/R) injury is the most common cause of acute kidney injury (AKI). Pathogenesis of postischemic AKI involves hemodynamic changes, oxidative stress, inflammation process, calcium ion overloading, apoptosis and necrosis. Up to date, therapeutic approaches to treat AKI are extremely limited. Thus, the aim of this study was to evaluate the effects of hyperbaric oxygen (HBO) preconditioning on citoprotective enzyme, heme oxygenase-1 (HO-1), pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins expression, in postischemic AKI induced in normotensive Wistar and spontaneously hypertensive rats (SHR). The animals were randomly divided into six experimental groups: SHAM-operated Wistar rats (W-SHAM), Wistar rats with induced postischemic AKI (W-AKI) and Wistar group with HBO preconditioning before AKI induction (W-AKI + HBO). On the other hand, SHR rats were also divided into same three groups: SHR-SHAM, SHR-AKI and SHR-AKI + HBO. We demonstrated that HBO preconditioning upregulated HO-1 and anti-apoptotic Bcl-2 protein expression, in both Wistar and SH rats. In addition, HBO preconditioning improved glomerular filtration rate, supporting by significant increase in creatinine, urea and phosphate clearances in both rat strains. Considering our results, we can also say that even in hypertensive conditions, we can expect protective effects of HBO preconditioning in experimental model of AKI.


Assuntos
Injúria Renal Aguda/prevenção & controle , Heme Oxigenase (Desciclizante)/metabolismo , Oxigenoterapia Hiperbárica/métodos , Hipertensão/complicações , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/urina , Animais , Creatinina/metabolismo , Creatinina/urina , Modelos Animais de Doenças , Humanos , Hipertensão/fisiopatologia , Hipertensão/terapia , Rim/irrigação sanguínea , Rim/patologia , Rim/fisiopatologia , Masculino , Oxigênio/administração & dosagem , Fosfatos/metabolismo , Fosfatos/urina , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Eliminação Renal/fisiologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/urina , Regulação para Cima , Ureia/metabolismo , Ureia/urina
3.
PLoS One ; 15(1): e0226974, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31914135

RESUMO

Renal ischemia/reperfusion injury is a common cause of acute kidney injury (AKI) and hypertension might contribute to the increased incidence of AKI. The purpose of this study was to investigate the effects of single and combined hyperbaric oxygen (HBO) preconditioning and NADPH oxidase inhibition on oxidative stress, kidney function and structure in spontaneously hypertensive rats (SHR) after renal ischemia reperfusion injury. HBO preconditioning was performed by exposing to pure oxygen (2.026 bar) twice a day for two consecutive days for 60 minutes, and 24h before AKI induction. For AKI induction, the right kidney was removed and ischemia was performed by clamping the left renal artery for 45 minutes. NADPH oxidase inhibition was induced by apocynin (40 mg/kg b.m., intravenously) 5 minutes before reperfusion. AKI significantly increased renal vascular resistance and reduced renal blood flow, which were significantly improved after apocynin treatment. Also, HBO preconditioning, with or without apocynin treatment showed improvement on renal hemodynamics. AKI significantly increased plasma creatinine, urea, phosphate levels and lipid peroxidation in plasma. Remarkable improvement, with decrease in creatinine, urea and phosphate levels was observed in all treated groups. HBO preconditioning, solitary or with apocynin treatment decreased lipid peroxidation in plasma caused by AKI induction. Also, combined with apocynin, it increased catalase activity and solitary, glutathione reductase enzyme activity in erythrocytes. While AKI induction significantly increased plasma KIM- 1 levels, HBO preconditioning, solitary or with apocynin decreased its levels. Considering renal morphology, significant morphological alterations present after AKI induction were significantly improved in all treated groups with reduced tubular dilatation, tubular necrosis in the cortico-medullary zone and PAS positive cast formation. Our results reveal that NADPH oxidase inhibition and hyperbaric oxygen preconditioning, with or without NADPH oxidase inhibition may have beneficial effects, but their protective role should be evaluated in further studies.


Assuntos
Acetofenonas/uso terapêutico , Injúria Renal Aguda/terapia , Inibidores Enzimáticos/uso terapêutico , Oxigenoterapia Hiperbárica/métodos , NADPH Oxidases/antagonistas & inibidores , Traumatismo por Reperfusão/terapia , Injúria Renal Aguda/complicações , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA