Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 36(5): e22315, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35429059

RESUMO

Arterial media calcification is an active cell process. This encompasses osteochondrogenic transdifferentiation of vascular smooth muscle cells followed by the deposition of calcium-phosphate crystals. Increasing evidence suggests a significant role for endothelial cells (ECs) in the development of arterial media calcification. This manuscript explores a role for endothelial dysfunction in the disease progression of arterial media calcification. Male rats were randomly assigned to four different groups. The first group received standard chow. The second group was given L-NAME (≈50 mg kg-1 · d-1 ), to induce endothelial dysfunction, in addition to standard chow. The third group and fourth group received a warfarin-supplemented diet to induce mild calcification and the latter group was co-administered L-NAME. Prior to sacrifice, non-invasive measurement of aortic distensibility was performed. Animals were sacrificed after 6 weeks. Arterial media calcification was quantified by measuring aortic calcium and visualized on paraffin-embedded slices by the Von Kossa method. Arterial stiffness and aortic reactivity was assessed on isolated carotid segments using specialized organ chamber setups. Warfarin administration induced mineralization. Simultaneous administration of warfarin and L-NAME aggravated the arterial media calcification process. Through organ chamber experiments an increased vessel tonus was found, which could be linked to reduced basal NO availability, in arteries of warfarin-treated animals. Furthermore, increased calcification because of L-NAME administration was related to a further compromised endothelial function (next to deteriorated basal NO release also deteriorated stimulated NO release). Our findings suggest early EC changes to impact the disease progression of arterial media calcification.


Assuntos
Calcinose , Calcificação Vascular , Doenças Vasculares , Animais , Cálcio , Progressão da Doença , Células Endoteliais , Masculino , NG-Nitroarginina Metil Éster , Ratos , Túnica Média , Calcificação Vascular/induzido quimicamente , Varfarina/toxicidade
2.
Pharmaceutics ; 13(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34452102

RESUMO

Patients with chronic kidney disease (CKD) suffer from arterial media calcification and a disturbed bone metabolism. Tissue-nonspecific alkaline phosphatase (TNAP) hydrolyzes the calcification inhibitor pyrophosphate (PPi) into inorganic phosphate (Pi) and thereby stimulates arterial media calcification as well as physiological bone mineralization. This study investigates whether the TNAP inhibitor SBI-425, PPi or the combination of both inhibit arterial media calcification in an 0.75% adenine rat model of CKD. Treatments started with the induction of CKD, including (i) rats with normal renal function (control diet) treated with vehicle and CKD rats treated with either (ii) vehicle, (iii) 10 mg/kg/day SBI-425, (iv) 120 µmol/kg/day PPi and (v) 120 µmol/kg/day PPi and 10 mg/kg/day SBI-425. All CKD groups developed a stable chronic renal failure reflected by hyperphosphatemia, hypocalcemia and high serum creatinine levels. CKD induced arterial media calcification and bone metabolic defects. All treatments, except for SBI-425 alone, blocked CKD-related arterial media calcification. More important, SBI-425 alone and in combination with PPi increased osteoid area pointing to a less efficient bone mineralization. Clearly, potential side effects on bone mineralization will need to be assessed in any clinical trial aimed at modifying the Pi/PPi ratio in CKD patients who already suffer from a compromised bone status.

3.
Nephrol Dial Transplant ; 35(10): 1689-1699, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33022710

RESUMO

INTRODUCTION: Sucroferric oxyhydroxide (PA21) is an efficacious, well-tolerated iron-based phosphate binder and a promising alternative to existing compounds. We compared the effects of PA21 with those of a conventional phosphate binder on renal function, mineral homeostasis and vascular calcification in a chronic kidney disease-mineral and bone disorder (CKD-MBD) rat model. METHODS: To induce stable renal failure, rats were administered a 0.25% adenine diet for 8 weeks. Concomitantly, rats were treated with vehicle, 2.5 g/kg/day PA21, 5.0 g/kg/day PA21 or 3.0 g/kg/day calcium carbonate (CaCO3). Renal function and calcium/phosphorus/iron metabolism were evaluated during the study course. Renal fibrosis, inflammation, vascular calcifications and bone histomorphometry were quantified. RESULTS: Rats treated with 2.5 or 5.0 g/kg/day PA21 showed significantly lower serum creatinine and phosphorus and higher ionized calcium levels after 8 weeks of treatment compared with vehicle-treated rats. The better preserved renal function with PA21 went along with less severe anaemia, which was not observed with CaCO3. Both PA21 doses, in contrast to CaCO3, prevented a dramatic increase in fibroblast growth factor (FGF)-23 and significantly reduced the vascular calcium content while both compounds ameliorated CKD-related hyperparathyroid bone. CONCLUSIONS: PA21 treatment prevented an increase in serum FGF-23 and had, aside from its phosphate-lowering capacity, a beneficial impact on renal function decline (as assessed by the renal creatinine clearance) and related disorders. The protective effect of this iron-based phosphate binder on the kidney in rats, together with its low pill burden in humans, led us to investigate its use in patients with impaired renal function not yet on dialysis.


Assuntos
Modelos Animais de Doenças , Compostos Férricos/uso terapêutico , Falência Renal Crônica/tratamento farmacológico , Sacarose/uso terapêutico , Calcificação Vascular/prevenção & controle , Animais , Combinação de Medicamentos , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Falência Renal Crônica/complicações , Masculino , Fósforo/sangue , Ratos , Ratos Wistar , Calcificação Vascular/etiologia
4.
Nat Commun ; 11(1): 721, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024848

RESUMO

Myo-inositol hexakisphosphate (IP6) is a natural product known to inhibit vascular calcification (VC), but with limited potency and low plasma exposure following bolus administration. Here we report the design of a series of inositol phosphate analogs as crystallization inhibitors, among which 4,6-di-O-(methoxy-diethyleneglycol)-myo-inositol-1,2,3,5-tetrakis(phosphate), (OEG2)2-IP4, displays increased in vitro activity, as well as more favorable pharmacokinetic and safety profiles than IP6 after subcutaneous injection. (OEG2)2-IP4 potently stabilizes calciprotein particle (CPP) growth, consistently demonstrates low micromolar activity in different in vitro models of VC (i.e., human serum, primary cell cultures, and tissue explants), and largely abolishes the development of VC in rodent models, while not causing toxicity related to serum calcium chelation. The data suggest a mechanism of action independent of the etiology of VC, whereby (OEG2)2-IP4 disrupts the nucleation and growth of pathological calcification.


Assuntos
Fosfatos de Inositol/química , Fosfatos de Inositol/farmacologia , Calcificação Vascular/tratamento farmacológico , 6-Fitase/metabolismo , Adenina/efeitos adversos , Animais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Difusão Dinâmica da Luz , Etilenoglicol/química , Humanos , Injeções Subcutâneas , Fosfatos de Inositol/farmacocinética , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Ratos Sprague-Dawley , Uremia/tratamento farmacológico , Uremia/fisiopatologia , Calcificação Vascular/induzido quimicamente , Difração de Raios X
5.
Chemosphere ; 220: 286-299, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30590295

RESUMO

The use of geo-engineering materials to manage phosphorus in lakes has increased in recent years with aluminium and lanthanum based materials being most commonly applied. Hence the potential impact of the use of these compounds on human health is receiving growing interest. This review seeks to understand, evaluate and compare potential unintended consequences on human health and ecotoxicological risks associated with the use of lanthanum- and aluminium-based materials to modify chemical and ecological conditions in water bodies. In addition to their therapeutic use for the reduction of intestinal phosphate absorption in patients with impaired renal function, the phosphate binding capacity of aluminium and lanthanum also led to the development of materials used for water treatment. Although lanthanum and aluminium share physicochemical similarities and have many common applications, their uptake and kinetics within the human body and living organisms importantly differ from each other which is reflected in a different toxicity profile. Whilst a causal role in the development of neurological pathologies, skeletal lesions, hematopoietic disorders and respiratory effects has unequivocally been demonstrated with increased exposure to aluminium, studies until now have failed to find such a clear association after exposure to lanthanum although caution is warranted. Our review indicates that lanthanum and aluminium have a distinctly different profile with respect to their potential effects on human health. Regular monitoring of both aluminium and lanthanum concentrations in lanthanum-/aluminium-treated water by the responsible authorities is recommended to avoid acute accidental or chronic low level accumulation.


Assuntos
Recuperação e Remediação Ambiental/métodos , Fósforo/análise , Medição de Risco/métodos , Poluentes Químicos da Água/análise , Alumínio/metabolismo , Água Doce , Humanos , Lantânio/metabolismo , Fósforo/metabolismo , Poluentes Químicos da Água/metabolismo
6.
Cardiorenal Med ; 7(3): 234-244, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28736564

RESUMO

BACKGROUND: The cardiorenal syndrome (CRS) is a major health problem in our aging population. The term was introduced to cover disorders of the kidneys and heart, whereby dysfunction of one organ may induce dysfunction of the other. As the natural history of the CRS is mostly slow, hence difficult to explore in clinical trials, adequate animal models combining cardiovascular and renal disease are required. Therefore, we developed and characterized a usable model for CRS type 4, i.e. chronic kidney disease (CKD) causing cardiac dysfunction. METHODS: CKD was induced in rats by supplementing the diet with adenine. During 8 weeks, several aspects of CRS were studied: CKD, mineral-bone disorder (MBD), cardiovascular disease, and (iron-deficiency) anemia. Hereto, the following parameters were monitored: serum creatinine, calcium, phosphate, FGF23, dynamic bone parameters, aortic Ca deposits, heart weight, serum NT-proANP, Hct, Hb, reticulocytes, spleen iron, and serum hepcidin. RESULTS: Animals developed a severe CKD together with a disturbed mineral balance as reflected by the increased serum creatinine and phosphorus levels and decreased serum calcium levels; and in association herewith aberrations in hormonal levels of FGF-23. In turn, the well-known and highly undesirable complications of CKD, i.e. high turnover bone disease and pathological vessel calcification were induced. Furthermore (iron-deficiency) anemia developed quickly. CONCLUSION: The animal model described in this article in many aspects mimics the human situation of the CRS type 4 and will be useful to concomitantly evaluate the effects of new treatment strategies on the various aspects of CRS.

7.
PLoS One ; 9(9): e107067, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25229549

RESUMO

The alternative phosphate binder calcium acetate/magnesium carbonate (CaMg) effectively reduces hyperphosphatemia, the most important inducer of vascular calcification, in chronic renal failure (CRF). In this study, the effect of low dose CaMg on vascular calcification and possible effects of CaMg on bone turnover, a persistent clinical controversy, were evaluated in chronic renal failure rats. Adenine-induced CRF rats were treated daily with 185 mg/kg CaMg or vehicle for 5 weeks. The aortic calcium content and area% calcification were measured to evaluate the effect of CaMg. To study the effect of CaMg on bone remodeling, rats underwent 5/6th nephrectomy combined with either a normal phosphorus diet or a high phosphorus diet to differentiate between possible bone effects resulting from either CaMg-induced phosphate deficiency or a direct effect of Mg. Vehicle or CaMg was administered at doses of 185 and 375 mg/kg/day for 8 weeks. Bone histomorphometry was performed. Aortic calcium content was significantly reduced by 185 mg/kg/day CaMg. CaMg ameliorated features of hyperparathyroid bone disease. In CRF rats on a normal phosphorus diet, the highest CaMg dose caused an increase in osteoid area due to phosphate depletion. The high phosphorus diet combined with the highest CaMg dose prevented the phosphate depletion and thus the rise in osteoid area. CaMg had no effect on osteoblast/osteoclast or dynamic bone parameters, and did not alter bone Mg levels. CaMg at doses that reduce vascular calcification did not show any harmful effect on bone turnover.


Assuntos
Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Falência Renal Crônica/metabolismo , Magnésio/farmacologia , Fosfatos/metabolismo , Calcificação Vascular/metabolismo , Acetatos/metabolismo , Acetatos/farmacologia , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Remodelação Óssea/efeitos dos fármacos , Compostos de Cálcio/metabolismo , Compostos de Cálcio/farmacologia , Dieta , Modelos Animais de Doenças , Magnésio/metabolismo , Masculino , Fósforo/metabolismo , Ratos
8.
Calcif Tissue Int ; 91(5): 307-15, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22926202

RESUMO

The present study investigated to what extent normalization of bone turnover goes along with a reduction of high-dose calcitriol-induced vascular calcifications in uremic rats. Five groups of male Sprague-Dawley rats were studied: sham-operated controls (n = 7), subtotally nephrectomized (SNX) uremic (CRF) animals (n = 12), CRF + calcitriol (vitD) (0.25 µg/kg/day) (n = 12), CRF + vitD + cinacalcet (CIN) (10 mg/kg/day) (n = 12), and CRF + vitD + parathyroidectomy (PTX) (n = 12). Treatment started 2 weeks after SNX and continued for the next 14 weeks. High-dose calcitriol treatment in hyperparathyroid rats went along with the development of distinct vascular calcification, which was significantly reduced by >50 %, in both CIN-treated and PTX animals. Compared to control animals and those of the CRF group, calcitriol treatment either in combination with CIN or PTX or not was associated with a significant increase in bone area comprising ±50 % of the total tissue area. However, whereas excessive woven bone accompanied by a dramatically increased osteoid width/area was seen in the CRF + vitD group, CIN treatment and PTX resulted in significantly reduced serum PTH level, which was accompanied by a distinct reduction of both the bone formation rate and the amount of osteoid. These data indicate that less efficient calcium and phosphorus incorporation in bone inherent to the severe hyperparathyroidism in vitamin D-treated uremic rats goes along with excessive vascular calcification, a process which is partially reversed by CIN treatment in combination with a more efficacious bone mineralization, thus restricting the availability of calcium and phosphate for being deposited in the vessel wall.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Calcitriol/efeitos adversos , Cálcio/sangue , Hiperparatireoidismo/tratamento farmacológico , Naftalenos/farmacologia , Uremia/induzido quimicamente , Calcificação Vascular/prevenção & controle , Vitaminas/efeitos adversos , Animais , Cálcio/metabolismo , Cinacalcete , Masculino , Naftalenos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Uremia/metabolismo , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA