Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Food Chem Toxicol ; 187: 114586, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493978

RESUMO

The risk assessment of heavy metals in tea is extremely imperative for the health of tea consumers. However, the effects of varietal variations and seasonal fluctuations on heavy metals and minerals in tea plants remain unclear. Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to evaluate the contents of aluminum (Al), manganese (Mn), magnesium (Mg), boron (B), calcium (Ca), copper (Cu), cobalt (Co), iron (Fe), sodium (Na), zinc (Zn), arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and antimony (Sb) in the two categories of young leaves (YL) and mature leaves (ML) of tea (Camellia sinensis) cultivars throughout the growing seasons. The results showed significant variations in the contents of the investigated nutrients both among the different cultivars and growing seasons as well. Furthermore, the average concentrations of Al, Mn, Mg, B, Ca, Cu, Co, Fe, Na, Zn, As, Cd, Cr, Ni, and Sb in YL ranged, from 671.58-2209.12, 1260.58-1902.21, 2290.56-2995.36, 91.18-164.68, 821.95-5708.20, 2.55-3.80, 3.96-25.22, 37.95-202.84, 81.79-205.05, 27.10-69.67, 0.028-0.053, 0.065-0.127, 2.40-3.73, 10.57-12.64, 0.11-0.14 mg kg-1, respectively. In ML, the concentrations were 2626.41-7834.60, 3980.82-6473.64, 3335.38-4537.48, 327.33-501.70, 9619.89-13153.68, 4.23-8.18, 17.23-34.20, 329.39-567.19, 145.36-248.69, 40.50-81.42, 0.089-0.169, 0.23-0.27, 5.24-7.89, 18.51-23.97, 0.15-0.19 mg kg-1, respectively. The contents of all analyzed nutrients were found to be higher in ML than in YL. Target hazard quotients (THQ) of As, Cd, Cr, Ni, and Sb, as well as the hazard index (HI), were all less than one, suggesting no risk to human health via tea consumption. This research might provide the groundwork for essential minerals recommendations, as well as a better understanding and management of heavy metal risks in tea.


Assuntos
Arsênio , Camellia sinensis , Metais Pesados , Humanos , Estações do Ano , Cádmio/análise , Monitoramento Ambiental/métodos , Metais Pesados/toxicidade , Metais Pesados/análise , Arsênio/análise , Minerais , Cromo/análise , Níquel/análise , Manganês/análise , Alumínio/análise , Medição de Risco , Zinco/análise , Chá/química
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123754, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38091646

RESUMO

The unreasonable spraying and random migration of acetamiprid may cause pollution of crops, soil and water resources in the environment, resulting in threatening ecosystem and human health. However, the monitoring of acetamiprid using mass spectrum in the environment encounters challenges due to high-cost instruments and complex processing time. Herein, we fabricated a rapid and reliable SERS method based on Ag@ZIF-8@Au platforms for tracing acetamiprid residues in the environment. In this method, a MOF material named ZIF-8 is coated with silver nanoparticles and distributed internally between AgNPs and AuNPs to enhance Raman signal, which can enrich pesticide molecules into the hotspots area provided by noble material and helps avoid the oxidation of silver nanoparticles. High sensitivity (LOD of 9.027 × 10-10 M for acetamiprid, and SERS enhancement factor of 4.3 × 107), excellent reproducibility (6.496% or 7.198% RSD for 30 random points) and superior stability (3.127% RSD for 6 weeks) were achieved using the proposed method. Acetamiprid with concentrations from 10-4 to 10-9 M were successfully detected by SERS method. Furthermore, the linear detection models of acetamiprid in different environment matrices (lake water, tea leaves, tea garden soil, oranges and oranges orchard soil) were established and all the correlation coefficient (R2) were higher than or equal to 95%, indicating the excellent adaptability of Ag@ZIF-8@Au platform in environment. The randomly spiked concentrations of acetamiprid were also tested with good recovery values and low relative error values, further confirming the reliability of the detection method.


Assuntos
Ouro , Nanopartículas Metálicas , Neonicotinoides , Humanos , Ouro/química , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Prata/química , Ecossistema , Chá , Solo , Análise Espectral Raman/métodos
3.
Food Chem ; 439: 138176, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091790

RESUMO

Steamed green tea has a long history and unique aroma, but little is known about its key aroma components. In this study, 173 volatiles in steamed green tea were identified using solvent-assisted flavor evaporation and headspace-solid phase microextraction plus two chromatographic columns of different polarities. Aroma extract dilution analysis revealed 48 highly aroma-active compounds with flavor dilution factors 64-1024. Internal standards were used to calculate odorant active value (OAV), and 11 OAV > 1 key aroma compounds were determined. Omission test identified eight substances, including dimethyl sulfide, (E)-ß-ionone, cis-jasmone, linalool, nonanal, heptanal, isovaleraldehyde and (Z)-3-hexenol, as the key aroma active compounds of steamed green tea. With the increase of withering degree, the content of these substances increased first and then decreased except for heptanal and cis-jasmone. Moreover, the water content of 62 % was suggested to be an appropriate withering degree during the processing of steamed green tea.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Chá/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Vapor , Compostos Orgânicos Voláteis/análise
4.
Food Chem ; 438: 138062, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38064793

RESUMO

This study used samples processed with an innovative manufacturing process to explore the dynamic changes of large-leaf yellow tea (LYT) in color, aroma, and taste substances, and the quality components were most significantly affected in the stages of first pile-yellowing (FP) and over-fired drying (TD). In this process, the moisture and temperature conditions caused chlorophyll degradation, Maillard reactions, caramelization reactions, and isomerization of phenolic substances, forming the quality of LYT. Specifically, chlorophyll degradation favored the formation of color quality; the taste quality was determined by the content of soluble sugars, amino acids, catechins, etc.; the aroma quality was dependent on the content changes of alcohols and aldehydes, as well as the increase of sweet and roasting aroma substances in the third drying stage. Additionally, twelve key aroma components, including linalool, (E)-ß-ionone, 2,3-diethyl-5-methyl-pyrazine, etc., were identified as contributors to revealing LYT rice crust-like and sweet aroma formation mechanism.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Odorantes/análise , Chá/química , Camellia sinensis/química , Paladar , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis/análise , Folhas de Planta/química , Clorofila/análise
5.
Food Chem ; 438: 137837, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37979270

RESUMO

Acidification of aroma-enhanced black tea during storage was studied. UPLC-Q-TOF/MS (Ultra Performance Liquid Chromatography and Quadrupole-Time of Flight Mass Spectrometer) and HPLC (High-Performance Liquid Chromatography) analysis of non-volatile substances and organic acids revealed a decrease of soluble sugars and amino acids in aroma-enhanced black tea, while an increase in organic acids such as oxalic acid, malic acid and quinic acid. Further in vitro experiments indicated that the acidification of aroma-enhanced tea during storage can be attributed to decomposition of sugars and amino acids by heating, oxidation of aromatic aldehydes. Meanwhile, the amino acids, catechins, soluble sugars and flavonoids that constitute the taste of black tea are further reduced, changing the taste composition of tea infusion and further increasing its acidity. This study revealed the reasons for black tea acidification during aroma enhancement and storage and provided a theoretical basis for improving black tea quality.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Chá/química , Odorantes/análise , Temperatura , Camellia sinensis/química , Aminoácidos , Aminas/análise , Açúcares , Concentração de Íons de Hidrogênio , Compostos Orgânicos Voláteis/análise
6.
Tree Physiol ; 43(11): 2031-2045, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37742093

RESUMO

Cuttage is the preferred approach for rapid propagation of many species including tea plant (Camellia sinensis). Leaf serves as a key part of nodal cutting, but there is a lack of systematic research on its role in the cutting process. In this study, 24 tea cultivars were employed to prove the necessity of leaf and light during cuttage. Further leaf physiological parameters found that lower net photosynthesis rate probably promoted rooting. Phytohormone content detection showed that auxin content and composition pattern were related to rooting ability. Leaf transcriptome analyses of cuttings from a representative easy-to-root cultivar (cv. Echa 10) revealed that genes involved in carbohydrate metabolism, signal transduction, metabolite biosynthesis and transportation were differentially expressed during the rooting process. CsTSA1, CsYUC10, CsAUX1s, CsPIN3 and CsPIN5 were selected as the candidate genes, which possibly regulate the rooting of nodal cuttings. These results illustrate the necessity of the leaf in cuttage and provide molecular evidence that leaf is an important place for signal transduction, metabolite synthesis and transport during the rooting process.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Perfilação da Expressão Gênica , Fotossíntese , Chá/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Transcriptoma , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Food Chem Toxicol ; 178: 113939, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37433353

RESUMO

Fluoride (F-) is widely present in nature, while long-term excessive F- intake can lead to fluorosis. Theaflavins are an important bioactive ingredient of black and dark tea, and black and dark tea water extracts showed a significantly lower F- bioavailability than NaF solutions in previous studies. In this study, the effect and mechanism of four theaflavins (theaflavin, theaflavin-3-gallate, theaflavin-3'-gallate, theaflavin-3,3'-digallate) on F- bioavailability were investigated using normal human small intestinal epithelial cells (HIEC-6) as a model. The results showed that theaflavins could inhibit the absorptive (apical - basolateral) transport of F- while promote its secretory (basolateral - apical) transport in HIEC-6 cell monolayers in a time- and concentration-dependent (5-100 µg/mL) manner, and significantly reduce the cellular F- uptake. Moreover, the HIEC-6 cells treated with theaflavins showed a reduction in cell membrane fluidity and cell surface microvilli. Transcriptome, qRT-PCR and Western blot analysis revealed that theaflavin-3-gallate (TF3G) addition could significantly enhance the mRNA and protein expression levels of tight junction-related genes in HIEC-6 cells, such as claudin-1, occludin and zonula occludens-1 (ZO-1). Overall, theaflavins may reduce F- absorptive transport by regulating tight junction-related proteins, and decreasing intracellular F- accumulation by affecting the cell membrane structure and properties in HIEC-6 cells.


Assuntos
Biflavonoides , Catequina , Humanos , Fluoretos , Chá/química , Antioxidantes/farmacologia , Catequina/metabolismo , Biflavonoides/farmacologia , Biflavonoides/metabolismo
8.
Food Chem ; 424: 136397, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37247599

RESUMO

A facile sensor system based on heat-treatment solid phase microextraction and Surface-Enhanced Raman Scattering (HT-SPME-SERS) was established for in-situ detection of isocarbophos in complex tea matrix. Starting from the action optimization of temperature control unit and air flow control unit, pesticide molecules volatilizing from solution are efficiently captured by substrate and generate real-time SERS signals by a hand-held Raman spectrometer, and the sensor system based on HT-SPME-SERS was finally established. A novel SERS substrate of Cu@rGO@Ag was developed as HT-SPME-SERS material, where reduced graphene oxide (rGO) enriched pesticide molecules by π-π stacking. A superior detection sensitivity brought by the ultra-high enhancement effect of Cu@rGO@Ag substrate was obtained. A good linear relationship between Raman intensity and isocarbophos concentration was obtained and the limit of detection (LOD) was as low as 0.00451 ppm. The detection results obtained from the sensor system have been verified by gas chromatography-mass spectrometer (GC-MS), showing its great application potential for the safety of agricultural products.


Assuntos
Praguicidas , Microextração em Fase Sólida , Microextração em Fase Sólida/métodos , Temperatura Alta , Praguicidas/análise , Análise Espectral Raman/métodos , Chá/química
9.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047263

RESUMO

Photosystem II repair in chloroplasts is a critical process involved in maintaining a plant's photosynthetic activity under cold stress. FtsH (filamentation temperature-sensitive H) is an essential metalloprotease that is required for chloroplast photosystem II repair. However, the role of FtsH in tea plants and its regulatory mechanism under cold stress remains elusive. In this study, we cloned a FtsH homolog gene in tea plants, named CsFtsH5, and found that CsFtsH5 was located in the chloroplast and cytomembrane. RT-qPCR showed that the expression of CsFtsH5 was increased with leaf maturity and was significantly induced by light and cold stress. Transient knockdown CsFtsH5 expression in tea leaves using antisense oligonucleotides resulted in hypersensitivity to cold stress, along with higher relative electrolyte leakage and lower Fv/Fm values. To investigate the molecular mechanism underlying CsFtsH5 involvement in the cold stress, we focused on the calcineurin B-like-interacting protein kinase 11 (CsCIPK11), which had a tissue expression pattern similar to that of CsFtsH5 and was also upregulated by light and cold stress. Yeast two-hybrid and dual luciferase (Luc) complementation assays revealed that CsFtsH5 interacted with CsCIPK11. Furthermore, the Dual-Luc assay showed that CsCIPK11-CsFtsH5 interaction might enhance CsFtsH5 stability. Altogether, our study demonstrates that CsFtsH5 is associated with CsCIPK11 and plays a positive role in maintaining the photosynthetic activity of tea plants in response to low temperatures.


Assuntos
Camellia sinensis , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Calcineurina/metabolismo , Temperatura Baixa , Camellia sinensis/genética , Chá , Metaloproteases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Plant Physiol Biochem ; 196: 328-338, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36739840

RESUMO

Nitrogen (N) is a major nutrition element for tea plant. However, application of high levels of N negatively causes environmental problems. Therefore, improved N use efficiency (NUE) of tea plant will be highly desirable and crucial for sustainable tea cultivation. Autophagy plays a central role in N recycling and holds potential to improve N utilization, and many AuTophaGy-related genes (ATGs) are involved in the autophagy process. Here, CsATG3a was identified from Camellia sinensis, and the functions involved in N utilization was characterized in arabidopsis (Arabidopsis thaliana). The transcript level of CsATG3a in tea leaves increases with their maturity. Relative to the wild type (WT) arabidopsis, two CsATG3a-overexpressing (CsATG3a-OE) lines exhibited improved vegetative growth, delayed reproductive stage, and upregulated expression of AtATGs (AtATG3, AtATG5 and AtATG8b) in a low N (LN) hydroponic condition. The expression levels of AtNRT1.1, AtNRT2.1, AtNRT2.2, AtAMT1.1 and AtAMT1.3 for N uptake and transport in roots were all significantly higher in CsATG3a-OE lines compared with those in the WT under LN. Meanwhile, the overexpression of CsATG3a in arabidopsis also increased N and dry matter allocation into both rosette leaves and roots under LN. Additionally, compared with WT, improved HI (harvest index), NHI (N harvest index), NUtE (N utilization efficiency) and NUE (N use efficiency) of CsATG3a-OE lines were further confirmed in a low-N soil cultured experiment. Together, these results concluded that CsATG3a is involved in N recycling and enhances tolerance to LN, indicating that CsATG3a holds potential promise to improve NUE in tea plant.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Nitrogênio/metabolismo , Transporte Biológico , Chá
11.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770746

RESUMO

Peach leaf orange dark tea (ODT) is a fruity tea made by removing the pulp from peach leaf orange and placing dry Qingzhuan tea into the husk, followed by fixing them together and drying. Since the quality of traditional outdoor sunlight fixing (SL) is affected by weather instability, this study explored the feasibility of two new fixing methods, including hot air fixing (HA) and steam fixing (ST). Results showed that fixing method had a great impact on ODT shape, aroma, and taste. Compared with SL and ST, HA endowed ODT with higher fruit aroma, mellow taste, better coordination, and higher sensory evaluation score. Physical-chemical composition analysis showed that SL-fixed orange peel was higher than HA- or ST-fixed peel in the content of polyphenols, flavonoids, soluble protein, hesperidin and limonin, while HA has a higher content of volatile substances and contains more alcohols, aldehydes and ketones, and acid and esters than ST and SL. Activity analysis showed that HA was superior to ST or SL in comprehensive antioxidant activity and inhibitory activity against α-glucosidase. Comprehensive results demonstrated that HA has better performance in improving ODT quality and can replace the traditional SL method in production.


Assuntos
Citrus sinensis , Compostos Orgânicos Voláteis , Chá/química , Paladar , Flavonoides/química , Tecnologia , Odorantes/análise , Compostos Orgânicos Voláteis/análise
12.
BMC Plant Biol ; 22(1): 306, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35751024

RESUMO

BACKGROUND: The major aluminum (Al) detoxication mechanism of tea plant (Camellia sinensis), as an Al hyperaccumulator plant, is the fixation of almost 70% of Al in the cell walls. Pectin is the primary constituent of cell walls, a degree of methylation of pectin polysaccharides regulated by the pectin methylesterase (PME) genes can greatly affect the Al binding capacity. The knowledge on PME gene family in tea plant is still poor. RESULTS: We identified 66 (CsPME1-CsPME66) PME genes from C. sinensis genome. We studied their protein characterization, conserved motifs, gene structure, systematic evolution and gene expression under Al treatments, to establish a basis for in-depth research on the function of PMEs in tea plant. Gene structures analysis revealed that the majority of PME genes had 2-4 exons. Phylogenetic results pointed out that the PME genes from the same species displayed comparatively high sequence consistency and genetic similarity. Selective pressure investigation suggested that the Ka/Ks value for homologous genes of PME family was less than one. The expression of CsPMEs under three Al concentration treatments was tissue specific, eight PME genes in leaves and 15 in roots displayed a trend similar to of the Al contents and PME activities under Al concentration treatments, indicating that the degree of pectin de-esterification regulated by PME was crucial for Al tolerance of tea plant. CONCLUSIONS: Sixty-six CsPME genes were identified for the first time in tea plant. The genome-wide identification, classification, evolutionary and transcription analyses of the PME gene family provided a new direction for further research on the function of PME gene in Al tolerance of tea plant.


Assuntos
Camellia sinensis , Alumínio/metabolismo , Alumínio/toxicidade , Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Pectinas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chá
13.
J Sci Food Agric ; 102(12): 5399-5410, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35332546

RESUMO

BACKGROUND: Floral and sweet odors are two typical characteristic aromas of Congou black tea, but their aroma-active compounds are still unclear. Characterizing the key aroma-active compounds can provide a theoretical foundation for the practical aroma quality evaluation of Congou black tea and directional processing technology of high-quality black tea with floral or sweet odors. Gas chromatography-olfactometry (GC-O) combined with odor activity value (OAV) is often used to screen key aroma-active substances, but the interaction between aroma components and their impact on the overall sensory quality is ignored. Therefore, in this study, OAV combined with variable importance in projection (VIP) and Spearman correlation analysis (SCA) were used to characterize the aroma-active components of Congou black teas with floral and sweet odors. RESULTS: Eighty-five volatiles were identified in these samples using gas chromatography-mass spectrometry (GC-MS). Twenty-three compounds were identified as potential markers for the floral and sweet odors of Congou black teas from orthogonal partial least squares discriminant analysis (OPLS-DA). Eighteen compounds were selected as candidate aroma compounds based on GC-O analysis and OAV calculations. In addition, 26 compounds were screened as crucial aroma compounds based on SCA. Finally, 19 compounds were evaluated as key aroma compounds by the comprehensive evaluation of VIP, OAV, and SCA. Terpenoids are the main active compounds that contribute to the floral odor of Congou black tea, whereas aldehydes are the key compounds for the sweet odor. CONCLUSION: The proposed method can effectively screen the aroma-active compounds and can be used for comprehensive quality control of products. © 2022 Society of Chemical Industry.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Camellia sinensis/química , Quimiometria , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Olfatometria/métodos , Chá/química , Compostos Orgânicos Voláteis/química
14.
J Agric Food Chem ; 69(47): 14278-14286, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34797979

RESUMO

Magnesium (Mg) plays important roles in photosynthesis, sucrose partitioning, and biomass allocation in plants. However, the specific mechanisms of tea plant response to Mg deficiency remain unclear. In this study, we investigated the effects of Mg deficiency on the quality constituents of tea leaves. Our results showed that the short-term (7 days) Mg deficiency partially elevated the concentrations of polyphenols, free amino acids, and caffeine but decreased the contents of chlorophyll and Mg. However, long-term (30 days) Mg-deficient tea displayed decreased contents of these constituents. Particularly, Mg deficiency increased the index of catechins' bitter taste and the ratio of total polyphenols to total free amino acids. Moreover, the transcription of key genes involved in the biosynthesis of flavonoid, caffeine, and theanine was differentially affected by Mg deficiency. Additionally, short-term Mg deficiency induced global transcriptome change in tea leaves, in which a total of 2522 differentially expressed genes were identified involved in secondary metabolism, amino acid metabolism, and chlorophyll metabolism. These results may help to elucidate why short-term Mg deficiency partially improves the quality constituents of tea, while long-term Mg-deficient tea may taste more bitter, more astringent, and less umami.


Assuntos
Camellia sinensis , Deficiência de Magnésio , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Hidroponia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Chá
15.
Food Res Int ; 148: 110604, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507748

RESUMO

Tea is one of the most popular beverages in the world and is believed to be beneficial for health. The main components in tea change greatly depending on different processes, and thus, the effects of different teas on human health may differ. In this study, we compared the effect of green, oolong, black, and dark tea extracts on sucrase-isomaltase (SI) activity and glucose transport, which are two intervention options for postprandial blood glucose control, using Caco-2 cells as a model. Theaflavin-rich black tea extracts showed the highest inhibition of SI activity and retardation of the hydrolysis of sucrose, maltose, and isomaltose, with IC50 values of 8.34 µg/mL, 16.10 µg/mL, and 21.63 µg/mL, respectively. All four kinds of tea extracts caused a dose-dependent inhibition of glucose transport, which were closely related to the catechin content. Green tea extracts showed the highest inhibition of glucose transport and was more effective against sodium-dependent glucose cotransporter 1 (SGLT1) than glucose transporter 2 (GLUT2) in the management of glucose transport. Black tea extracts also inhibited glucose transport despite low level of catechins. The reason could partly lie in the suppression of Na+/K+-ATPase, which reduced the energy needed for SGLT1 to actively transport glucose. Furthermore, the mRNA level of SI, SGLT1, GLUT2, and Na+/K+-ATPase in Caco-2 cells were significantly reduced after treatment with tea extracts for 2 h. These in vitro studies suggested that tea could be used as a functional food in the diet to modulate postprandial hyperglycaemia for diabetic patients.


Assuntos
Hipoglicemiantes , Chá , Células CACO-2 , Glucose , Humanos , Hipoglicemiantes/farmacologia , Oligo-1,6-Glucosidase , Extratos Vegetais/farmacologia , Sacarase
16.
Food Res Int ; 147: 110472, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399469

RESUMO

Fungal community and non-volatile metabolites changes during the pile-fermentation are key factors to organoleptic qualities of dark green tea. However, the correlation between fungal succession and non-volatile compounds has never been satisfactorily explained. The purpose of the present study was to investigate fungal succession and its correlation with flavor compounds by multi-omics. Illumina Miseq sequencing of ITS1 region was conducted to analyze the fungal succession, a total of 78 OTUs which consisted of one phyla, nine classes, 15 orders, 26 families, 37 genera were identified, with Ascomycota as dominant phyla. Cluster analysis and non-metric multidimensional scaling of samples demonstrated the distribution of OTUs in multi-dimensional space, the pile-fermentation process of dark green tea can be divided into four periods according to the generated trajectory of fungal population, S0, S1-S3, S4-S5, and S6. Aspergillus is the dominant genus. Penicillium, Cyberlindnera, Debaryomyces, Candida, Thermomyces, Rasamsonia, Thermoascus, and Byssochlamys appear in different periods. three alkaloids, seven catechins, nine amino acids, five organic acids, five flavones and flavonoid glycosides were identified by UPLC-QTOF-MS/MS, and the contents were all decreasing. Caffeine, EGC, EGCG, L-theanine, kaempferitrin, L-phenylalanine, gallic acid, and myricetin-3-O-galactoside are important ingredients which contribute to the flavor of dark green tea. This study demonstrated the fungal succession, non-volatile flavor compounds and their relationships during pile-fermentation of dark green tea, and provides new insights into evaluating pivotal role of fungal succession in the manufacturing process of dark green tea.


Assuntos
Catequina , Micobioma , Catequina/análise , Fermentação , Humanos , Micobioma/genética , Espectrometria de Massas em Tandem , Chá
17.
Drug Deliv ; 28(1): 1737-1747, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34463173

RESUMO

This study aimed to clarify the bioavailability mechanism of theaflavins by using the Caco-2 monolayer in vitro model. Prior to the transport of theaflavin (TF), theaflavin-3-gallate (TF3G), theaflavin-3'-gallate (TF3'G), and theaflavin-3, 3'-digallate (TFDG), we found the cytotoxicity of theaflavins was in the order of TF3'G > TFDG > TF3G > TF, suggesting the galloyl moiety enhances the cytotoxicity of theaflavins. Meantime, the galloyl moiety made theaflavins unstable, with the stability in the order of TF > TFDG > TF3G/TF3'G. Four theaflavins showed poor bioavailability with the Papp values ranging from 0.44 × 10-7 to 3.64 × 10-7 cm/s in the absorptive transport. All the theaflavins showed an efflux ratio of over 1.24. And it is further confirmed that P-glycoprotein (P-gp), multidrug resistance associated proteins (MRPs) and breast cancer resistance protein (BCRP) were all shown to contribute to the efflux transport of four theaflavins, with P-gp playing the most important role, followed by MRPs and BCRP. Moreover, theaflavins increased the expression of P-gp, MRP1, MPR3, and BCRP while decreased the expression of MRP2 at the transcription and translation levels. Additionally, the gallated theaflavins were degraded into simple theaflavins and gallic acids when transported through Caco-2 monolayers. Overall, the structural instability, efflux transporters, and cell metabolism were all responsible for the low bioavailability of four theaflavins in Caco-2 monolayers.


Assuntos
Biflavonoides/química , Biflavonoides/farmacocinética , Catequina/química , Catequina/farmacocinética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/efeitos dos fármacos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Células CACO-2 , Sobrevivência Celular , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Ácido Gálico/análogos & derivados , Ácido Gálico/química , Ácido Gálico/farmacocinética , Humanos , Chá/química
18.
Int J Mol Sci ; 22(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064673

RESUMO

Histone methylation plays an important regulatory role in the drought response of many plants, but its regulatory mechanism in the drought response of the tea plant remains poorly understood. Here, drought stress was shown to induce lower relative water content and significantly downregulate the methylations of histone H3K4 in the tea plant. Based on our previous analysis of the SET Domain Group (SDG) gene family, the full-length coding sequence (CDS) of CsSDG36 was cloned from the tea cultivar 'Fuding Dabaicha'. Bioinformatics analysis showed that the open reading frame (ORF) of the CsSDG36 gene was 3138 bp, encoding 1045 amino acids and containing the conserved structural domains of PWWP, PHD, SET and PostSET. The CsSDG36 protein showed a close relationship to AtATX4 of the TRX subfamily, with a molecular weight of 118,249.89 Da, and a theoretical isoelectric point of 8.87, belonging to a hydrophilic protein without a transmembrane domain, probably located on the nucleus. The expression of CsSDG36 was not detected in the wild type, while it was clearly detected in the over-expression lines of Arabidopsis. Compared with the wild type, the over-expression lines exhibited lower hyperosmotic resistance by accelerating plant water loss, increasing reactive oxygen species (ROS) pressure, and increasing leaf stomatal density. RNA-seq analysis suggested that the CsSDG36 overexpression caused the differential expression of genes related to chromatin assembly, microtubule assembly, and leaf stomatal development pathways. qRT-PCR analysis revealed the significant down-regulation of stomatal development-related genes (BASL, SBT1.2(SDD1), EPF2, TCX3, CHAL, TMM, SPCH, ERL1, and EPFL9) in the overexpression lines. This study provides a novel sight on the function of histone methyltransferase CsSDG36 under drought stress.


Assuntos
Arabidopsis/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , Pressão Osmótica , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Chá/enzimologia , Regulação da Expressão Gênica de Plantas , Histona-Lisina N-Metiltransferase/genética , Proteínas de Plantas/genética , Chá/química
19.
BMC Biotechnol ; 21(1): 17, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648478

RESUMO

BACKGROUND: Alanine decarboxylase (AlaDC), specifically present in tea plants, is crucial for theanine biosynthesis. Serine decarboxylase (SDC), found in many plants, is a protein most closely related to AlaDC. To investigate whether the new gene AlaDC originate from gene SDC and to determine the biochemical properties of the two proteins from Camellia sinensis, the sequences of CsAlaDC and CsSDC were analyzed and the two proteins were over-expressed, purified, and characterized. RESULTS: The results showed that exon-intron structures of AlaDC and SDC were quite similar and the protein sequences, encoded by the two genes, shared a high similarity of 85.1%, revealing that new gene AlaDC originated from SDC by gene duplication. CsAlaDC and CsSDC catalyzed the decarboxylation of alanine and serine, respectively. CsAlaDC and CsSDC exhibited the optimal activities at 45 °C (pH 8.0) and 40 °C (pH 7.0), respectively. CsAlaDC was stable under 30 °C (pH 7.0) and CsSDC was stable under 40 °C (pH 6.0-8.0). The activities of the two enzymes were greatly enhanced by the presence of pyridoxal-5'-phosphate. The specific activity of CsSDC (30,488 IU/mg) was 8.8-fold higher than that of CsAlaDC (3467 IU/mg). CONCLUSIONS: Comparing to CsAlaDC, its ancestral enzyme CsSDC exhibited a higher specific activity and a better thermal and pH stability, indicating that CsSDC acquired the optimized function after a longer evolutionary period. The biochemical properties of CsAlaDC might offer reference for theanine industrial production.


Assuntos
Alanina Desidrogenase/genética , Alanina Desidrogenase/metabolismo , Camellia sinensis/enzimologia , Camellia sinensis/genética , Serina/metabolismo , Alanina/metabolismo , Alanina Desidrogenase/química , Carboxiliases/genética , Escherichia coli/genética , Glutamatos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Chá
20.
J Agric Food Chem ; 69(6): 2001-2012, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33538166

RESUMO

This study investigated the regulatory relationship between important flavor compounds and microRNA (miRNA) in nine different tissues of tea plant by analyzing the related metabolites, small RNAs (sRNAs), degradome, and coexpression network. A total of 272 differential expressed miRNAs (DEmiRNAs) were obtained, including 198 conserved miRNAs and 74 novel miRNAs. Meanwhile, the expression patterns of miR159-GAMYB, miR167-ARF, and miR396-GRF pairs were investigated by quantitative real-time polymerase chain reaction (qRT-PCR) and the target sites were verified by 5'RNA ligase-mediated RACE (5' RLM-RACE). Further coexpression analysis showed that the content of gallated catechins was significantly and negatively correlated with the expression of miR156, but positively correlated with the expression of miR166 and miR172. Additionally, the expression of miR169a, miR169l, and miR319h was shown to be positively correlated with the content of nongallated catechins and the experssion levels of ANRa, ANRb, and LARb. Moreover, important volatile compounds, such as linalool, geraniol, and 2-phenylethanol, were found to be highly positively correlated with the expression of miR171o, miRN71a, miRN71b, miRN71c, and miRN71d. Our data indicate that these miRNAs may play important roles in regulating the biosynthesis of flavor compounds in different tissues of tea plant.


Assuntos
Camellia sinensis , MicroRNAs , Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/metabolismo , Metabolismo Secundário , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA