Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 325(Pt B): 116556, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283173

RESUMO

There have been numerous summaries of the runoff purification characteristics of bioretention cells in warm climates. However, little has been done on the effects of freeze-thaw cycles (FTCs) that frequently occur in cold regions on bioretention cell performance. Three experimental columns were constructed to simulate the operation of the bioretention cell under the FTCs. The effects of FTCs on the nutrient removal efficiency of different filling bioretention cells were analyzed. The results showed that the ammonia nitrogen (NH4+-N) concentration in the effluent of the wood chip bioretention cell under the T3 conditions (WBCF) (2.35 mg/L) was significantly higher than that of the wood chip bioretention cell operating at room temperature (WBCR) (0.62 mg/L). The effluent NH4+-N concentration of aluminum sludge bioretention cell (ABCF) (0.096 mg/L) under the FTCs was lower than that of WBCF (0.91 mg/L). Under the T3 condition, the effluent nitrate nitrogen (NO3--N) and total nitrogen (TN) concentrations of WBCF (5.33 mg/L and 8.86 mg/L) were higher than those of WBCR (5 mg/L and 6.11 mg/L) at room temperature. Under FTCs conditions, both WBCF and ABCF had high NO3--N removal efficiency (up to 85.87% and 24.75%) at the initial stage of thawing of the filler, and the efficiency gradually decreased with the thawing of the filler. With the increase of FTCs, the NO3--N removal efficiency of WBCF gradually decreased (always higher than 13.6%), while the removal efficiency of ABCF fluctuated wildly (the removal efficiency was primarily negative). The total phosphorus (TP) concentration in the effluent of WBCF (0.11 mg/L) under the T3 conditions was lower than that of WBCR (0.02 mg/L) at room temperature, and the TP concentration of ABCF (0.021 mg/L) in the effluent under the FTCs was slightly lower than that of WBCF (0.031 mg/L). The FTCs have a more significant impact on removing nitrogen pollutants in runoff, but have little effect on phosphorus. Compared with aluminum sludge, wood chips are more suitable for efficient removal of nitrogen pollutants in runoff under the FTCs. The experimental conclusions can provide a reference for the construction of bioretention cells in cold regions.


Assuntos
Poluentes Ambientais , Chuva , Alumínio , Esgotos , Fósforo , Nitrogênio/análise , Nutrientes
2.
Clin Breast Cancer ; 22(2): 89-97, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34535390

RESUMO

OBJECTIVE: Drug resistance in tumors is one of the major factors that leads to chemotherapy failure. This study aims to investigate the effect of Radix Tetrastigma extracts (RTEs) on Taxol-induced autophagy and the chemosensitivity against drug resistance in triple-negative breast cancer (TNBC). METHODS: Taxol-resistant MDA-MB-468 (MDA-MB-468/Taxol) cells were induced and treated with RTEs and/or Taxol. Mice were subcutaneously inoculated with MDA-MB- 468/Taxol cells to establish xenograft models. The associated protein levels were measured by western blotting. Flow cytometry, CCK-8 and EdU assay were performed to detect cell apoptosis, viability, and proliferation, respectively. RESULTS: In MDA-MB-468/Taxol cells, RTEs & Taxol treatment increased cell apoptosis, reduced cell viability and proliferation, up-regulated anti-autophagy marker LC3I/LC3II ratio, and enhanced mTOR level. With RTEs & Taxol treatment, mTOR silencing downregulated LC3I/LC3II ratio, increased cell viability and proliferation, and reduced cell apoptosis, while mTOR overexpression showed the opposite results. PI3K inhibitor reduced AKT and mTOR levels, and the effects on cell activities were similar to the results of mTOR silencing. After RTEs & Taxol injection, xenograft tumor was smaller, and AKT, mTOR, LC3I/LC3II ratio and apoptotic marker cleaved caspase-3 were increased. CONCLUSION: RTEs enhanced the chemosensitivity of resistant TNBC cells to Taxol through inhibiting PI3K/Akt/mTOR-mediated autophagy. MICRO: RTEs exerted anti-tumor effects in various cancers, and this study determined its role in TNBC. Taxol-resistant MDA-MB-468 cells were induced and xenograft models were established. We found that RTEs inhibited autophagy of MDA-MB-468/Taxol cells and reduced tumor growth. Inhibition of PI3K/Akt/mTOR pathway promoted autophagy of MDA-MB-468/Taxol cells. We may provide a new potential strategy for TNBC treatment.


Assuntos
Antioxidantes/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Fitoterapia/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA