Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabetologia ; 49(7): 1567-77, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16752175

RESUMO

AIMS/HYPOTHESIS: ATP-sensitive K(+) (K(ATP)) channels located on the beta cell plasma membrane play a critical role in regulating insulin secretion and are targets for the sulfonylurea class of antihyperglycaemic drugs. Recent reports suggest that these channels may also reside on insulin-containing dense-core vesicles and mitochondria. The aim of this study was to explore these possibilities and to test the hypothesis that vesicle-resident channels play a role in the control of organellar Ca(2+) concentration or pH. METHODS: To quantify the subcellular distribution of the pore-forming subunit Kir6.2 and the sulfonylurea binding subunit SUR1 in isolated mouse islets and clonal pancreatic MIN6 beta cells, we used four complementary techniques: immunoelectron microscopy, density gradient fractionation, vesicle immunopurification and fluorescence-activated vesicle isolation. Intravesicular and mitochondrial concentrations of free Ca(2+) were measured in intact or digitonin-permeabilised MIN6 cells using recombinant, targeted aequorins, and intravesicular pH was measured with the recombinant fluorescent probe pHluorin. RESULTS: SUR1 and Kir6.2 immunoreactivity were concentrated on dense-core vesicles and on vesicles plus the endoplasmic reticulum/Golgi network, respectively, in both islets and MIN6 cells. Reactivity to neither subunit was detected on mitochondria. Glibenclamide, tolbutamide and diazoxide all failed to affect Ca(2+) uptake into mitochondria, and K(ATP) channel regulators had no significant effect on intravesicular free Ca(2+) concentrations or vesicular pH. CONCLUSIONS/INTERPRETATION: A significant proportion of Kir6.2 and SUR1 subunits reside on insulin-secretory vesicles and the distal secretory pathway in mouse beta cells but do not influence intravesicular ion homeostasis. We propose that dense-core vesicles may serve instead as sorting stations for the delivery of channels to the plasma membrane.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , Transportadores de Cassetes de Ligação de ATP/fisiologia , Animais , Cálcio/metabolismo , Células Cultivadas , Homeostase , Concentração de Íons de Hidrogênio , Células Secretoras de Insulina/ultraestrutura , Transporte de Íons , Potencial da Membrana Mitocondrial , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Organelas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Receptores de Droga , Vesículas Secretórias/metabolismo , Receptores de Sulfonilureias , Distribuição Tecidual
2.
Neuron ; 20(2): 271-83, 1998 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9491988

RESUMO

The molecular basis of sensory hair cell mechanotransduction is largely unknown. In order to identify genes that are essential for mechanosensory hair cell function, we characterized a group of recently isolated zebrafish motility mutants. These mutants are defective in balance and swim in circles but have no obvious morphological defects. We examined the mutants using calcium imaging of acoustic-vibrational and tactile escape responses, high resolution microscopy of sensory neuroepithelia in live larvae, and recordings of extracellular hair cell potentials (microphonics). Based on the analyses, we have identified several classes of genes. Mutations in sputnik and mariner affect hair bundle integrity. Mutant astronaut and cosmonaut hair cells have relatively normal microphonics and thus appear to affect events downstream of mechanotransduction. Mutant orbiter, mercury, and gemini larvae have normal hair cell morphology and yet do not respond to acoustic-vibrational stimuli. The microphonics of lateral line hair cells of orbiter, mercury, and gemini larvae are absent or strongly reduced. Therefore, these genes may encode components of the transduction apparatus.


Assuntos
Células Ciliadas Vestibulares/fisiologia , Mecanorreceptores/fisiologia , Peixe-Zebra/genética , Estimulação Acústica , Sacos Aéreos/fisiologia , Animais , Comportamento Animal , Eletrofisiologia , Células Ciliadas Vestibulares/crescimento & desenvolvimento , Larva/citologia , Iluminação , Mutação , Fenótipo , Reflexo/fisiologia , Reflexo de Sobressalto/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA