Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 41(23): e110595, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305367

RESUMO

Mammalian SWI/SNF/BAF chromatin remodeling complexes influence cell lineage determination. While the contribution of these complexes to neural progenitor cell (NPC) proliferation and differentiation has been reported, little is known about the transcriptional profiles that determine neurogenesis or gliogenesis. Here, we report that BCL7A is a modulator of the SWI/SNF/BAF complex that stimulates the genome-wide occupancy of the ATPase subunit BRG1. We demonstrate that BCL7A is dispensable for SWI/SNF/BAF complex integrity, whereas it is essential to regulate Notch/Wnt pathway signaling and mitochondrial bioenergetics in differentiating NPCs. Pharmacological stimulation of Wnt signaling restores mitochondrial respiration and attenuates the defective neurogenic patterns observed in NPCs lacking BCL7A. Consistently, treatment with an enhancer of mitochondrial biogenesis, pioglitazone, partially restores mitochondrial respiration and stimulates neuronal differentiation of BCL7A-deficient NPCs. Using conditional BCL7A knockout mice, we reveal that BCL7A expression in NPCs and postmitotic neurons is required for neuronal plasticity and supports behavioral and cognitive performance. Together, our findings define the specific contribution of BCL7A-containing SWI/SNF/BAF complexes to mitochondria-driven NPC commitment, thereby providing a better understanding of the cell-intrinsic transcriptional processes that connect metabolism, neuronal morphogenesis, and cognitive flexibility.


Assuntos
Diferenciação Celular , Proteínas dos Microfilamentos , Células-Tronco Neurais , Animais , Camundongos , Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , Metabolismo Energético , Mitocôndrias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas dos Microfilamentos/metabolismo , Células-Tronco Neurais/citologia
2.
Curr Pharm Des ; 28(20): 1607-1610, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35579159

RESUMO

Due to the tight link between undertreated pain and agitation in dementia patients, aromatherapy can be a useful approach if an essential oil (EO) with powerful analgesic activity is used. The methodological difficulties of most aromatherapy trials have not allowed any definitive conclusion about the effectiveness of aromatherapy in dementia. The objective of the present perspective is to illustrate the long rigorous process leading from preclinical research to clinical translation of the EO of bergamot (BEO) for the management of agitation in dementia. A nanotechnology-based delivery system consisting of odorless alpha-tocopheryl stearate solid lipid nanoparticles (SLN) loaded with BEO (NanoBEO), has been proven active in acute and neuropathic pain models confirming the strong antinociceptive and anti-allodynic efficacy reported for BEO in preclinical studies. In particular, prolonged physicochemical stability of NanoBEO and titration in its main components are remarkable advantages allowing reproducible antinociceptive and anti-itch responses to be measured. Furthermore, the possibility to perform double-blind clinical trials made impossible so far because of the strong smell of essential oils used in aromatherapy. Demented patients receive limited treatment for chronic pain, particularly neuropathic. The BRAINAID (NCT04321889) trial will assess the effectiveness of NanoBEO on agitation and pain in severely demented patients to offer a safe tool able to provide relief to this fragile population. This double-blind clinical trial will be the first to assess the efficacy and safety of an engineered essential oil and will provide the rationale for the safer treatment of neuropsychiatric symptoms of dementia and pain in clinic.


Assuntos
Aromaterapia , Dor Crônica , Demência , Óleos Voláteis , Analgésicos/uso terapêutico , Dor Crônica/tratamento farmacológico , Ensaios Clínicos como Assunto , Demência/tratamento farmacológico , Humanos , Lipossomos , Nanopartículas , Óleos Voláteis/uso terapêutico , Óleos de Plantas/uso terapêutico
3.
Phytother Res ; 35(10): 5333-5338, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34435395

RESUMO

Pain is underdiagnosed and often not adequately treated, contributing to behavioral and psychological symptoms of dementia (BPSD). BPSD are treated with atypical antipsychotics that are associated with severe cerebrocardiovascular effects. Interestingly, treatment of pain may reduce agitation. Research is focusing on nonpharmacological treatment, such as aromatherapy, for pain and BPSD in dementia. This clinical study will assess the effect on agitation in severely demented elderly of BEO loaded in a nanotechnological odorless cream indistinguishable from placebo. This is a protocol for a randomized, double-blind, placebo-controlled trial (NCT04321889). A total of 134 patients aged ≥65 years with severe dementia (mini-mental state examination <12) will be recruited and randomly allocated 1:1 to either BEO or placebo group. After baseline screening, BEO (80 mg) cream or placebo cream will be trans-dermally applied on both arms twice a day for 4 weeks with a 4-week follow-up period. The effect on agitation will be the primary endpoint. Any adverse events will be reported. A double-blind, clinical trial evaluating efficacy and safety of an essential oil endowed with strong analgesic properties has never been carried out before. This study could form the basis for a safer and more effective treatment of BPSD in severe dementia.


Assuntos
Aromaterapia , Demência , Furocumarinas , Óleos Voláteis , Idoso , Demência/tratamento farmacológico , Método Duplo-Cego , Humanos , Nanotecnologia , Óleos Voláteis/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
4.
EMBO J ; 38(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30796049

RESUMO

Aberrant mitochondrial function contributes to the pathogenesis of various metabolic and chronic disorders. Inhibition of insulin/IGF-1 signaling (IIS) represents a promising avenue for the treatment of mitochondrial diseases, although many of the molecular mechanisms underlying this beneficial effect remain elusive. Using an unbiased multi-omics approach, we report here that IIS inhibition reduces protein synthesis and favors catabolism in mitochondrial deficient Caenorhabditis elegans We unveil that the lifespan extension does not occur through the restoration of mitochondrial respiration, but as a consequence of an ATP-saving metabolic rewiring that is associated with an evolutionarily conserved phosphoproteome landscape. Furthermore, we identify xanthine accumulation as a prominent downstream metabolic output of IIS inhibition. We provide evidence that supplementation of FDA-approved xanthine derivatives is sufficient to promote fitness and survival of nematodes carrying mitochondrial lesions. Together, our data describe previously unknown molecular components of a metabolic network that can extend the lifespan of short-lived mitochondrial mutant animals.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Longevidade , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/prevenção & controle , Xantina/administração & dosagem , Xantina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Insulina/química , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Metaboloma , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Proteoma , Transcriptoma
5.
PLoS Biol ; 16(6): e2004893, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29920513

RESUMO

Mutations in peroxin (PEX) genes lead to loss of peroxisomes, resulting in the formation of peroxisomal biogenesis disorders (PBDs) and early lethality. Studying PBDs and their animal models has greatly contributed to our current knowledge about peroxisomal functions. Very-long-chain fatty acid (VLCFA) accumulation has long been suggested as a major disease-mediating factor, although the exact pathological consequences are unclear. Here, we show that a Drosophila Pex19 mutant is lethal due to a deficit in medium-chain fatty acids (MCFAs). Increased lipolysis mediated by Lipase 3 (Lip3) leads to accumulation of free fatty acids and lipotoxicity. Administration of MCFAs prevents lipolysis and decreases the free fatty acid load. This drastically increases the survival rate of Pex19 mutants without reducing VLCFA accumulation. We identified a mediator of MCFA-induced lipolysis repression, the ceramide synthase Schlank, which reacts to MCFA supplementation by increasing its repressive action on lip3. This shifts our understanding of the key defects in peroxisome-deficient cells away from elevated VLCFA levels toward elevated lipolysis and shows that loss of this important organelle can be compensated by a dietary adjustment.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Ácidos Graxos/metabolismo , Mitocôndrias/patologia , Peroxinas/metabolismo , Transtornos Peroxissômicos/genética , Peroxissomos/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/metabolismo , Lipase/metabolismo , Lipólise/fisiologia , Mitocôndrias/genética , Membrana Nuclear/metabolismo , Peroxinas/genética , Transtornos Peroxissômicos/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA