RESUMO
Context: Clinicians can use stem cells to repair kidney injury. The kidneys' exosome secretions hold the secret to this therapeutic impact. Exosomes from urine-derived stem cells can prevent and treat glomerular damage that diabetes can cause, but the underlying process has remained a mystery. Objective: The study aimed to investigate the protective impact of exosomes from urine-derived stem cells (USCs) against diabetic nephropathy (DN) and to determine the mechanisms involved. Design: The research team performed an animal study. Setting: The study took place at the Affiliated Hospital of Jiujiang University in Jiujiang, Jiangxi, China. Animals: The animals were rats, SD male rats, weighing 200-220g, 40 animals, purchased from Weitong Lihua Experimental Animal Technology Co., Ltd. (certificate number: SCXK (Beijing) 2021-0006). Intervention: Except for a control group, the rats in the groups had induced DN. The five groups, with 10 rats each, were: (1) the negative control group, which received 0.2 ml of PBS solution; (2) the DN group, a second negative control group, which received 0.2 ml of PBS solution, (3) the inhibitor group, an intervention group that received 20 mg/kg of autophagy inhibitor; (4) the exosomes group, an intervention group that received 100 ug/kg of exosomes; and (5) the exosomes + inhibitor group, an intervention group that received 100 ug/kg of exosomes + 20 mg/kg of autophagy inhibitor. From week 8, for four weeks the team injected the inhibitor, exosomes, and exosomes + inhibitor groups with the appropriate treatments using the rats' tail veins. Outcome Measures: The research team: (1) examined the USCs in the exosomes of stem cells; (2) assessed the rats' weights and fasting blood glucose (FBG), using a blood glucose meter; (3) used Coomassie brilliant blue (CBB) staining to determine the amount of protein in the rats' urine and assessed their biochemical indexes; and (4) used Western blot (WB) and a quantitative polymerase chain reaction (Q-PCR) to detect autophagy and the signal transduction pathway. Results: Human exosomes from USCs alleviated injury in the rats that DN caused by reducing urinary-protein levels, serum creatinine (SCR), blood urea nitrogen (BUN), glomerular cell accumulation, and kidney weights. In rats with induced DN, the exosomes + inhibitor significantly reduced the activation of the mTOR signaling pathway, reduced the autophagy of their kidney cells, increased the protein expression of Bcl-2 in the kidney tissues, and lessened the damage to glomerular cells. Conclusions: Human urine-derived stem cell exosomes can significantly reduce the activation of the mTOR signaling pathway, reduce the autophagy of rats' kidney cells, increase the protein expression of LC3B in kidney tissues, and reduce the damage to glomerular cells. By blocking the mTOR signaling pathway, human urogenic exosomes can alleviate the signs and symptoms of DN.
Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Exossomos , Humanos , Ratos , Masculino , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Glicemia , Exossomos/química , Exossomos/metabolismo , Ratos Sprague-Dawley , Diabetes Mellitus Experimental/induzido quimicamente , Rim , Serina-Treonina Quinases TOR/efeitos adversos , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Células-Tronco/química , Células-Tronco/metabolismoRESUMO
Triptolide is a major active ingredient isolated from the traditional Chinese medicine Tripterygium wilfordii, which has anti-inflammatory, anti-cancer, and immunomodulatory effects. However, in clinical studies, triptolide has toxic side effects on the heart, kidney, liver and reproductive organs. With respect to female reproductive toxicity, damaging effects of triptolide on the ovary have been reported, but it has remained unknown whether oocytes are affected by triptolide. Therefore, this study established a concentration gradient of triptolide exposure in mice using 0 (control), 30, 60, and 90 µg triptolide/kg body weight/day administered by gavage. Triptolide administration for 28 d reduced body weight and ovarian weight and affected the developmental potential of oocytes. The triptolide-treated group exhibited meiotic failure of oocytes due to impaired spindle assembly, chromosome alignment, and tubulin stability. Triptolide was also found to induce mitochondrial dysfunction, autophagy and early apoptosis, iron homeostasis, and abnormal histone modifications. These adverse effects could be associated with oxidative stress induced by triptolide. In conclusion, our findings suggest detrimental effects of triptolide on mouse oocytes and, thus, on female reproduction.
Assuntos
Fenantrenos , Feminino , Camundongos , Animais , Fenantrenos/toxicidade , Oócitos , Estresse Oxidativo , Apoptose , Peso CorporalRESUMO
Deep vein thrombosis (DVT) is a common and lethal complication of surgery. In the clinic, thrombolytic drugs are primarily used for treating DVT. However, the utilization of thrombolytic drugs is limited due to the risk of urokinase (UK)-related hemorrhagic complications. In this paper, a binary eutectic phase-change fatty acid composed of lauric acid and stearic acid was used to block the pores of gold-mesoporous silica core-shell nanoparticles, so as to deliver thrombolytic drugs. The eutectic mixture has a well-defined melting point at 39.2 °C, which can be used as a biocompatible phase-change material for hyperthermia-triggered drug release. The prepared system presents remarkable photothermal effects due to the gold nanoparticles and quick drug release in response to near-infrared irradiation (NIR). In addition, localized hyperthermia could also enhance the lysis of the thrombus. The thrombolytic effect of this system was evaluated in vitro and in vivo. Herein, a rabbit femoral vein thrombosis model was first built for imitating thrombolysis in vivo. The B-ultrasound was then used to monitor the changes in the thrombus after treatment. The results indicated that the reported system could be potentially used to deliver thrombotic drugs in the clinic.