Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theranostics ; 6(6): 862-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27162556

RESUMO

Near-infrared photoimmunotherapy (NIR-PIT), which employs monoclonal antibody (mAb)-phototoxic phthalocyanine dye IR700 conjugates, permits the specific, image-guided and spatiotemporally controlled elimination of tumor cells. Here, we report the highly efficient NIR-PIT of human tumor xenografts initiated from patient-derived cancer stem cells (CSCs). Using glioblastoma stem cells (GBM-SCs) expressing the prototypic CSC marker AC133/CD133, we also demonstrate here for the first time that NIR-PIT is highly effective against brain tumors. The intravenously injected theranostic AC133 mAb conjugate enabled the non-invasive detection of orthotopic gliomas by NIR fluorescence imaging, and reached AC133+ GBM-SCs at the invasive tumor front. AC133-targeted NIR-PIT induced the rapid cell death of AC133+ GBM-SCs and thereby strong shrinkage of both subcutaneous and invasively growing brain tumors. A single round of NIR-PIT extended the overall survival of mice with established orthotopic gliomas by more than a factor of two, even though the harmless NIR light was applied through the intact skull. Humanised versions of this theranostic agent may facilitate intraoperative imaging and histopathological evaluation of tumor borders and enable the highly specific and efficient eradication of CSCs.


Assuntos
Antígeno AC133/imunologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Imunoterapia/métodos , Fototerapia/métodos , Nanomedicina Teranóstica/métodos , Animais , Anticorpos/administração & dosagem , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Modelos Animais de Doenças , Xenoenxertos , Humanos , Indóis/administração & dosagem , Isoindóis , Camundongos , Células-Tronco/imunologia , Análise de Sobrevida , Resultado do Tratamento
2.
Radiat Oncol ; 8: 42, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23448094

RESUMO

BACKGROUND AND PURPOSE: Heat shock Protein 90 (Hsp90) is a molecular chaperone that folds, stabilizes, and functionally regulates many cellular proteins involved in oncogenic signaling and in the regulation of radiosensitivity. It is upregulated in response to stress such a heat. Hyperthermia is a potent radiosensitizer, but induction of Hsp90 may potentially limit its efficacy. Our aim was to investigate whether the new Hsp90 inhibitor NVP-HSP990 increases radiosensitivity, thermosensitivity and radiothermosensitivity of human tumor cell lines. MATERIAL AND METHODS: U251 glioblastoma and MIA PaCa-2 pancreatic carcinoma cells were used. To determine clonogenic survival, colony forming assays were performed. Cell viability and proliferation were assesed by Trypan blue staining. Cell cycle and apoptosis analyses were performed by flow cytometry. DAPI staining was used to detect mitotic catastrophe. RESULTS: NVP-HSP990 increased the thermosensitivity, radiosensitivity and radio-thermosensitivity of both cell lines in clonogenic assays. 72 hours after irradiation with 4 Gy, a significant reduction in cell number associated with considerable G2/M acumulation and mitotic catastrophe as well as cell death by apoptosis/necrosis was observed. CONCLUSIONS: Treatment with NVP-HSP990 strongly sensitized U251 and MIA PaCa-2 cells to hyperthermia and ionizing radiation or combination thereof through augmentation of G2/M arrest, mitotic catastrophe and associated apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Hipertermia Induzida , Piridonas/farmacologia , Pirimidinas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Terapia Combinada , Citometria de Fluxo , Raios gama , Glioblastoma/metabolismo , Glioblastoma/terapia , Humanos , Radiossensibilizantes/farmacologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA