Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36770606

RESUMO

Many of the medicinally active molecules in the flavonoid class of phytochemicals are being researched for their potential antiviral activity against various DNA and RNA viruses. Quercetin is a flavonoid that can be found in a variety of foods, including fruits and vegetables. It has been reported to be effective against a variety of viruses. This review, therefore, deciphered the mechanistic of how Quercetin works against some of the deadliest viruses, such as influenza A, Hepatitis C, Dengue type 2 and Ebola virus, which cause frequent outbreaks worldwide and result in significant morbidity and mortality in humans through epidemics or pandemics. All those have an alarming impact on both human health and the global and national economies. The review extended computing the Quercetin-contained natural recourse and its modes of action in different experimental approaches leading to antiviral actions. The gap in effective treatment emphasizes the necessity of a search for new effective antiviral compounds. Quercetin shows potential antiviral activity and inhibits it by targeting viral infections at multiple stages. The suppression of viral neuraminidase, proteases and DNA/RNA polymerases and the alteration of many viral proteins as well as their immunomodulation are the main molecular mechanisms of Quercetin's antiviral activities. Nonetheless, the huge potential of Quercetin and its extensive use is inadequately approached as a therapeutic for emerging and re-emerging viral infections. Therefore, this review enumerated the food-functioned Quercetin source, the modes of action of Quercetin for antiviral effects and made insights on the mechanism-based antiviral action of Quercetin.


Assuntos
Quercetina , Viroses , Humanos , Quercetina/farmacologia , Quercetina/uso terapêutico , Quercetina/química , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Alimento Funcional , Viroses/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química
2.
Cardiovasc Toxicol ; 23(1): 32-45, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36626070

RESUMO

Lasia spinosa (L.) Thwaites is a medicinal plant of enormous traditional use with insufficient scientific evidence. This research screened the antioxidative effect of L. spinosa extracts by measuring the total phenolic content, total flavonoid content, DPPH free radical scavenging activity, ABTS scavenging activity, Iron-chelating activity, and Ferric reducing power followed by an evaluation of in vivo cardioprotective effect in doxorubicin-induced Wistar Albino rats. Phytochemical characterization was made by Gas Chromatography-Mass Spectroscopic analysis. L. spinosa showed an excellent antioxidative effect while methanol leaf extract (LSM) was found to be more potent than ethyl acetate leaf extract (LSE) in scavenging the free radicals. Intraperitoneal injection of doxorubicin caused a significant (P < 0.001) increase in lactate dehydrogenase (LDH), creatine kinase (CK-MB), C-reactive protein (CRP), and Cardiac troponin I. Pretreatment with orally administrated (LSM100 and LSM200 mg/kg b.w.) daily for 10 days showed a decrease in the cardiac markers, lipid profiles, especially triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), and an increase of high-density lipoprotein (HDL) compared to the disease control group. LSM200 was found to significantly (P < 0.05) decrease the levels of CK-MB and LDH. It also restored TC, TG, and LDL levels compared to the doxorubicin-induced cardiac control group. The protective role of LSM was further confirmed by histopathological examination. This study thus demonstrates that L. spinosa methanol extract could be approached as an alternative supplement for cardiotoxicity, especially in the chemical-induced toxicity of cardiac tissues.


Assuntos
Cardiotoxicidade , Extratos Vegetais , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Doxorrubicina/toxicidade , Metanol , Modelos Animais , Extratos Vegetais/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA