Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Res Bull ; 193: 84-94, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36539101

RESUMO

Auditory steady-state responses (ASSRs) are recurrent neural activities entrained to regular cyclic auditory stimulation. ASSRs are altered in individuals with schizophrenia, and may be related to hypofunction of the N-methyl-D-aspartate (NMDA) glutamate receptor. Noncompetitive NMDA receptor antagonists, including ketamine, have been used in ASSR studies of rodent models of schizophrenia. Although animal studies using non-human primates are required to complement rodent studies, the effects of ketamine on ASSRs are unknown in intact awake non-human primates. In this study, after administration of vehicle or ketamine, click trains at 20-83.3 Hz were presented to elicit ASSRs during recording of electroencephalograms in intact, awake macaque monkeys. The results indicated that ASSRs quantified by event-related spectral perturbation and inter-trial coherence were maximal at 83.3 Hz after vehicle administration, and that ketamine reduced ASSRs at 58.8 and 83.3 Hz, but not at 20 and 40 Hz. The present results demonstrated a reduction of ASSRs by the NMDA receptor antagonist at optimal frequencies with maximal responses in intact, awake macaques, comparable to ASSR reduction in patients with schizophrenia. These findings suggest that ASSR can be used as a neurophysiological biomarker of the disturbance of gamma-oscillatory neural circuits in this ketamine model of schizophrenia using intact, awake macaques. Thus, this model with ASSRs would be useful in the investigation of human brain pathophysiology as well as in preclinical translational research.


Assuntos
Ketamina , Esquizofrenia , Animais , Estimulação Acústica/métodos , Eletroencefalografia/métodos , Potenciais Evocados Auditivos/fisiologia , Ketamina/farmacologia , Primatas , Receptores de N-Metil-D-Aspartato , Esquizofrenia/tratamento farmacológico , Vigília
2.
BMC Neurosci ; 23(1): 57, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180823

RESUMO

BACKGROUND: Auditory steady-state responses (ASSRs) are periodic evoked responses to constant periodic auditory stimuli, such as click trains, and are suggested to be associated with higher cognitive functions in humans. Since ASSRs are disturbed in human psychiatric disorders, recording ASSRs from awake intact macaques would be beneficial to translational research as well as an understanding of human brain function and its pathology. However, ASSR has not been reported in awake macaques. RESULTS: Electroencephalograms (EEGs) were recorded from awake intact macaques, while click trains at 20-83.3 Hz were binaurally presented. EEGs were quantified based on event-related spectral perturbation (ERSP) and inter-trial coherence (ITC), and ASSRs were significantly demonstrated in terms of ERSP and ITC in awake intact macaques. A comparison of ASSRs among different click train frequencies indicated that ASSRs were maximal at 83.3 Hz. Furthermore, analyses of laterality indices of ASSRs showed that no laterality dominance of ASSRs was observed. CONCLUSIONS: The present results demonstrated ASSRs, comparable to those in humans, in awake intact macaques. However, there were some differences in ASSRs between macaques and humans: macaques showed maximal ASSR responses to click frequencies higher than 40 Hz that has been reported to elicit maximal responses in humans, and showed no dominant laterality of ASSRs under the electrode montage in this study compared with humans with right hemisphere dominance. The future ASSR studies using awake intact macaques should be aware of these differences, and possible factors, to which these differences were ascribed, are discussed.


Assuntos
Potenciais Evocados Auditivos , Vigília , Estimulação Acústica/métodos , Animais , Eletroencefalografia/métodos , Potenciais Evocados Auditivos/fisiologia , Macaca
3.
Front Pharmacol ; 11: 307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218736

RESUMO

Growing evidence suggests that oxidative stress due to amyloid ß (Aß) accumulation is involved in Alzheimer's disease (AD) through the formation of amyloid plaque, which leads to hyperphosphorylation of tau, microglial activation, and cognitive deficits. The dysfunction or phenotypic loss of parvalbumin (PV)-positive neurons has been implicated in cognitive deficits. Astaxanthin is one of carotenoids and known as a highly potent antioxidant. We hypothesized that astaxanthin's antioxidant effects may prevent the onset of cognitive deficits in AD by preventing AD pathological processes associated with oxidative stress. In the present study, we investigated the effects of astaxanthin intake on the cognitive and pathological progression of AD in a mouse model of AD. The AppNL-G-F/NL-G-F mice were fed with or without astaxanthin from 5-to-6 weeks old, and cognitive functions were evaluated using a Barnes maze test at 6 months old. PV-positive neurons were investigated in the hippocampus. Aß42 deposits, accumulation of microglia, and phosphorylated tau (pTau) were immunohistochemically analyzed in the hippocampus. The hippocampal anti-oxidant status was also investigated. The Barnes maze test indicated that astaxanthin significantly ameliorated memory deficits. Astaxanthin reduced Aß42 deposition and pTau-positive areal fraction, while it increased PV-positive neuron density and microglial accumulation per unit fraction of Aß42 deposition in the hippocampus. Furthermore, astaxanthin increased total glutathione (GSH) levels, although 4-hydroxy-2,3-trans-nonenal (4-HNE) protein adduct levels (oxidative stress marker) remained high in the astaxanthin supplemented mice. The results indicated that astaxanthin ameliorated memory deficits and significantly reversed AD pathological processes (Aß42 deposition, pTau formation, GSH decrease, and PV-positive neuronal deficits). The elevated GSH levels and resultant recovery of PV-positive neuron density, as well as microglial activation, may prevent these pathological processes.

4.
J Bodyw Mov Ther ; 22(3): 810-816, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30100317

RESUMO

Previous research suggests that aging-related deterioration of oral functions causes not only eating/swallowing disorders but also various conditions such as sleep disorders and higher-order brain dysfunction. The aim of the present study was to examine the effects of lip closure training on eating behavior, sleep, and brain function in elderly persons residing in an elder care facility. The 20 elderly subjects (mean age, 86.3 ± 1.0 years) were assigned to a control group or a lip closure training (LCT) group, in which an oral rehabilitation device was used for daily LCT sessions over a 4-week period. Before and after the 4-week intervention period, maximal lip closure force was measured, and prefrontal cortical hemodynamic activity (changes in oxygenated hemoglobin concentration) during lip closure movements was measured with (LCT group) or without (control group) use of the oral rehabilitation device. We also analyzed eating behavior and daytime sleep before and after the intervention period. Compared with the control group, the LCT group showed improved maximal lip closure force, shortened eating time, decreased food spill rates, and decreased daytime sleeping. Furthermore, compared with the control group, the LCT group showed a significant increase in prefrontal cortical activity during lip closure. In addition, the increase rate in the right dorsolateral prefrontal cortical activity after the intervention period was significantly correlated with the increase rate in the maximal lip closure force after the intervention period. These findings suggest that LCT is useful in elderly individuals with decreased eating/oral and cognitive functions without the risk of pulmonary aspiration during training.


Assuntos
Transtornos de Deglutição/prevenção & controle , Distúrbios do Sono por Sonolência Excessiva/prevenção & controle , Terapia por Exercício/métodos , Comportamento Alimentar , Lábio/fisiologia , Idoso , Idoso de 80 Anos ou mais , Transtornos de Deglutição/complicações , Distúrbios do Sono por Sonolência Excessiva/complicações , Feminino , Hemodinâmica , Humanos , Masculino , Força Muscular/fisiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA