RESUMO
Neural tube defects (NTDs) are among the most common birth defects, with a prevalence of close to 19 per 10,000 births worldwide. The etiology of NTDs is complex involving the interplay of genetic and environmental factors. Since nutrient deficiency is a risk factor and dietary changes are the major preventative measure to reduce the risk of NTDs, a more detailed understanding of how common micronutrient imbalances contribute to NTDs is crucial. While folic acid has been the most discussed environmental factor due to the success that population-wide fortification has had on prevention of NTDs, folic acid supplementation does not prevent all NTDs. The imbalance of several other micronutrients has been implicated as risks for NTDs by epidemiological studies and in vivo studies in animal models. In this review, we highlight recent literature deciphering the multifactorial mechanisms underlying NTDs with an emphasis on mouse and human data. Specifically, we focus on advances in our understanding of how too much or too little retinoic acid, zinc, and iron alter gene expression and cellular processes contributing to the pathobiology of NTDs. Synthesis of the discussed literature reveals common cellular phenotypes found in embryos with NTDs resulting from several micronutrient imbalances. The goal is to combine knowledge of these common cellular phenotypes with mechanisms underlying micronutrient imbalances to provide insights into possible new targets for preventative measures against NTDs.
Assuntos
Micronutrientes/metabolismo , Defeitos do Tubo Neural/metabolismo , Animais , Interação Gene-Ambiente , Humanos , Defeitos do Tubo Neural/genéticaRESUMO
Diencephalic defects underlie an array of neurological diseases. Previous studies have suggested that retinoic acid (RA) signaling is involved in diencephalic development at late stages of embryonic development, but its roles and mechanisms of action during early neural development are still unclear. Here we demonstrate that mice lacking enzymatic activity of the acetyltransferase GCN5 ((Gcn5hat/hat )), which were previously characterized with respect to their exencephalic phenotype, exhibit significant diencephalic expansion, decreased diencephalic RA signaling, and increased diencephalic WNT and SHH signaling. Using a variety of molecular biology techniques in both cultured neuroepithelial cells treated with a GCN5 inhibitor and forebrain tissue from (Gcn5hat/hat ) embryos, we demonstrate that GCN5, RARα/γ, and the poorly characterized protein TACC1 form a complex in the nucleus that binds specific retinoic acid response elements in the absence of RA. Furthermore, RA triggers GCN5-mediated acetylation of TACC1, which results in dissociation of TACC1 from retinoic acid response elements and leads to transcriptional activation of RA target genes. Intriguingly, RA signaling defects caused by in vitro inhibition of GCN5 can be rescued through RA-dependent mechanisms that require RARß. Last, we demonstrate that the diencephalic expansion and transcriptional defects seen in (Gcn5hat/hat ) mutants can be rescued with gestational RA supplementation, supporting a direct link between GCN5, TACC1, and RA signaling in the developing diencephalon. Together, our studies identify a novel, nonhistone substrate for GCN5 whose modification regulates a previously undescribed, tissue-specific mechanism of RA signaling that is required to restrict diencephalic size during early forebrain development.SIGNIFICANCE STATEMENT Changes in diencephalic size and shape, as well as SNPs associated with retinoic acid (RA) signaling-associated genes, have been linked to neuropsychiatric disorders. However, the mechanisms that regulate diencephalic morphogenesis and the involvement of RA signaling in this process are poorly understood. Here we demonstrate a novel role of the acetyltransferase GCN5 in a previously undescribed mechanism of RA signaling in the developing forebrain that is required to maintain the appropriate size of the diencephalon. Together, our experiments identify a novel nonhistone substrate of GCN5, highlight an essential role for both GCN5 and RA signaling in early diencephalic development, and elucidate a novel molecular regulatory mechanism for RA signaling that is specific to the developing forebrain.
Assuntos
Diencéfalo/anatomia & histologia , Diencéfalo/metabolismo , Transdução de Sinais/fisiologia , Tretinoína/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Animais , Diencéfalo/embriologia , Ativação Enzimática , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão/fisiologiaRESUMO
Neural tube defects (NTDs), a common birth defect in humans, result from the failure of the embryonic neural tube (NT) to close properly. NT closure is a complex, poorly understood morphogenetic process influenced by genes and environment. The most effective environmental influence in decreasing the risk for NTDs is folic acid (FA) fortification and supplementation, and these findings led to the recommendation of periconceptual FA intake and mandatory fortification of the US grain supply in 1998. To explore the relationship between genetics and responsiveness to FA supplementation, we used five mouse NTDs models-Zic2, Shroom3, Frem2, Grhl2 (Grainyhead-like 2) and L3P (Line3P)-and a long-term generational FA supplementation scheme. Contrary to expectations, we find that three genetic mutants respond adversely to FA supplementation with increased incidence of NTDs in homozygous mutants, occurrence of NTDs in heterozygous embryos and embryonic lethality prior to NT closure. Because of these unexpected responses, we examined NTD risk after short-term FA supplementation. Our results indicate that, for the same genetic allele, NTD risk can depend on the length of FA exposure. Our data indicate that, depending on the gene mutation, FA supplementation may adversely influence embryonic development and NT closure.
Assuntos
Suplementos Nutricionais/efeitos adversos , Ácido Fólico/efeitos adversos , Defeitos do Tubo Neural/etiologia , Defeitos do Tubo Neural/mortalidade , Tubo Neural/efeitos dos fármacos , Tubo Neural/embriologia , Animais , Modelos Animais de Doenças , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/genética , Gravidez , SobrevidaRESUMO
Neural tube defects (NTDs) are some of the most common birth defects observed in humans. The incidence of NTDs can be reduced by peri-conceptional folic acid supplementation alone and reduced even further by supplementation with folic acid plus a multivitamin. Here, we present evidence that iron maybe an important nutrient necessary for normal development of the neural tube. Following implantation of the mouse embryo, ferroportin 1 (Fpn1) is essential for the transport of iron from the mother to the fetus and is expressed in the visceral endoderm, yolk sac and placenta. The flatiron (ffe) mutant mouse line harbors a hypomorphic mutation in Fpn1 and we have created an allelic series of Fpn1 mutations that result in graded developmental defects. A null mutation in the Fpn1 gene is embryonic lethal before gastrulation, hypomorphic Fpn1(ffe/ffe) mutants exhibit NTDs consisting of exencephaly, spina bifida and forebrain truncations, while Fpn1(ffe/KI) mutants exhibit even more severe NTDs. We show that Fpn1 is not required in the embryo proper but rather in the extra-embryonic visceral endoderm. Our data indicate that loss of Fpn1 results in abnormal morphogenesis of the anterior visceral endoderm (AVE). Defects in the development of the forebrain in Fpn1 mutants are compounded by defects in multiple signaling centers required for maintenance of the forebrain, including the anterior definitive endoderm (ADE), anterior mesendoderm (AME) and anterior neural ridge (ANR). Finally, we demonstrate that this loss of forebrain maintenance is due in part to the iron deficiency that results from the absence of fully functional Fpn1.