Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diabetes Metab Syndr Obes ; 17: 1795-1808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655491

RESUMO

Purpose: To investigate the therapeutic effect and underlying mechanism of a traditional Chinese medicine (TCM) mixture consisting of Astragalus, rhubarb, and saffron in a mouse model of diabetic kidney disease (DKD). Methods: Forty-eight db/db mice received no TCM (DKD model), low-dose TCM, medium-dose TCM, or high-dose TCM, and an additional 12 db/m mice received no TCM (normal control). Intragastric TCM or saline (controls) was administered daily for 24 weeks. Blood glucose, body weight, serum creatinine (SCr), blood urea nitrogen (BUN), blood lipids, and urinary microalbumin were measured every four weeks, and the urinary albumin excretion rate (UAER) was calculated. After 24 weeks, kidney tissues were collected for transcriptome sequencing, and the main functions of these genes were determined via functional enrichment analysis. Results: Compared with the DKD model group, the medium-dose and high-dose TCM groups had significantly decreased levels of SCr, BUN, total cholesterol, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and UAER (all p<0.05). We identified 42 genes that potentially functioned in this therapeutic response, and the greatest effect on gene expression was in the high-dose TCM group. We also performed functional enrichment analysis to explore the potential mechanisms of action of these different genes. Conclusion: A high-dose of the Astragalus-rhubarb-saffron TCM provided the best prevention of DKD. Analysis of the kidney transcriptome suggested that this TCM mixture may prevent DKD by altering immune responses and oxygen delivery by hemoglobin.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38064628

RESUMO

Background: Impaired cardiac microvascular function has been implied in the pathophysiology of diabetic cardiovascular disease. However, the specific mechanism remains to be determined. Pyroptosis is a type of cell death that differs from apoptosis and autophagy. It is caused by the formation of plasma membrane pores through amino-terminal fragments of Gasdermin D (GSDMD), leading to the secretion of IL-1ß and IL-18. Recent studies have shown that irisin, a myokine cleaved by the extracellular domain of FNDC5, plays a protective role in cardiovascular diseases. Here, we investigated the potential role of pyroptosis on the cardiac microvascular endothelial cells (CMECs) injury induced by high glucose (HG) and further determined the protective effect of irisin on pyroptosis. Methods: CMECs were cultured with normal glucose (control group, 5.5 mM) and high glucose (25 mM) medium for 12, 24, and 48 h respectively. The pyroptosis of CMECs was measured by immunofluorescence staining, ELISA, and Western blot assays. Moreover, the apoptosis level was determined by flow cytometry and TUNEL staining. Results: Our results showed that HG promoted apoptosis and pyroptosis. However, irisin reversed the increased apoptosis and pyroptosis. To investigate the underlying mechanism, we overexpressed the NLRP3 protein. We found the protective effect of irisin on apoptosis and pyroptosis was abolished by NLRP3 over-expression. Conclusions: Our data suggest that irisin protects CMECs against apoptosis and pyroptosis, at least in part, by inhibiting NLRP3 inflammasome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA