RESUMO
Cysteine proteases (CPs) are vital proteolytic enzymes that play critical roles in various plant processes. However, the particular functions of CPs in maize remain largely unknown. We recently identified a pollen-specific CP (named PCP), which highly accumulated on the surface of maize pollen. Here, we reported that PCP played an important role in pollen germination and drought response in maize. Overexpression of PCP inhibited pollen germination, while mutation of PCP promoted pollen germination to some extent. Furthermore, we observed that germinal apertures of pollen grains in the PCP-overexpression transgenic lines were excessively covered, whereas this phenomenon was not observed in the wild type (WT), suggesting that PCP regulated pollen germination by affecting the germinal aperture structure. In addition, overexpression of PCP enhanced drought tolerance in maize plants, along with the increased activities of the antioxidant enzymes and the decreased numbers of the root cortical cells. Conversely, mutation of PCP significantly impaired drought tolerance. These results may aid in clarifying the precise functions of CPs in maize and contribute to the development of drought-tolerant maize materials.
Assuntos
Germinação , Zea mays , Germinação/genética , Zea mays/metabolismo , Resistência à Seca , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Pólen/genética , Pólen/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genéticaRESUMO
Starch is the major form of carbohydrate storage in plants and exists as discrete starch granules (SGs). Isolation of high-quality SGs in different plant tissues is a prerequisite for studying the roles of SGs during plant growth, development, and responses to abiotic stress. However, it is difficult to isolate transitory SGs from leaves and storage SGs from pollen grains due to their small sizes and low quantities. Herein, we develop a novel method for isolating SGs by using the aqueous two-phase system (ATS) of ethanol/NaH2 PO4 . The ATS method efficiently separated SGs from contaminants based on their differences in density, solubility, and polarity. Using this method, we first isolated and purified three kinds of SGs from maize seeds, pollen, and leaves. The biochemical, microscopic, and proteomic analyses demonstrated the high purity of the isolated SGs. Proteomic analysis revealed distinct differences in SG-bound proteins between seed SGs and pollen SGs. As a simple, rapid, and low-cost method, the ATS-based method exhibits highly universal and reproducible results for starch-containing tissues in various plant species.