Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7783, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179423

RESUMO

Osteoarthritis (OA) is the most prevalent rheumatic disease and a fast growing cause of disability. Current pharmacological treatments include antalgics and non-steroid anti-inflammatory drugs to control pain and inflammation as well as slow acting drugs such as intra-articular (IA) administration of hyaluronic acid. Oral supplementation or diet rich in polyunsaturated free fatty acids are proposed but evidence for benefit is still under debate. We here investigated the therapeutic potential of ARA 3000 BETA, an injectable copolymer of fatty acids, at the structural level in OA. Collagenase-induced osteoarthritis model was induced in C57BL/6 mice by collagenase injection into knee joint. Mice were treated with one or two IA or four intra-muscular injections (IM) of ARA 3000 BETA. At sacrifice, knee joints were recovered for cartilage analysis by confocal laser scanning microscopy (CLSM) and bone analysis by micro-computed tomography system. OA histological scoring was performed after safranin O/fast green staining. Histological analysis revealed a protective effect against cartilage degradation in treated knee joints after IM and IA administration. This was confirmed by CLSM with a significant improvement of all articular cartilage parameters, including thickness, volume and surface degradation whatever the administration route. A slight protective effect was also noticed on subchondral bone parameters and knee joint calcification after IM administration and to a lesser extent, two IA injections. We demonstrated the therapeutic efficacy of injectable ARA 3000 BETA in OA with a protection against cartilage and bone alterations providing the proof-of-concept that clinical translation might be envisioned to delay disease progression.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Osteoartrite , Camundongos , Animais , Ácidos Graxos/metabolismo , Microtomografia por Raio-X , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Osteoartrite/patologia , Colagenases/metabolismo , Cartilagem Articular/patologia , Osteoartrite do Joelho/patologia , Injeções Intra-Articulares
2.
PLoS One ; 5(12): e14247, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21151872

RESUMO

BACKGROUND: Based on their capacity to suppress immune responses, multipotent mesenchymal stromal cells (MSC) are intensively studied for various clinical applications. Although it has been shown in vitro that the immunomodulatory effect of MSCs mainly occurs through the secretion of soluble mediators, the mechanism is still not completely understood. The aim of the present study was to better understand the mechanisms underlying the suppressive effect of MSCs in vivo, using cells isolated from mice deficient in the production of inducible nitric oxide synthase (iNOS) or interleukin (IL)-6 in the murine model of collagen-induced arthritis. PRINCIPAL FINDINGS: In the present study, we show that primary murine MSCs from various strains of mice or isolated from mice deficient for iNOS or IL-6 exhibit different immunosuppressive potential. The immunomodulatory function of MSCs was mainly attributed to IL-6-dependent secretion of prostaglandin E2 (PGE2) with a minor role for NO. To address the role of these molecules in vivo, we used the collagen-induced arthritis as an experimental model of immune-mediated disorder. MSCs effectively inhibited collagen-induced inflammation during a narrow therapeutic window. In contrast to wild type MSCs, IL-6-deficient MSCs and to a lesser extent iNOS-deficient MSCs were not able to reduce the clinical signs of arthritis. Finally, we show that, independently of NO or IL-6 secretion or Treg cell induction, MSCs modulate the host response by inducing a switch to a Th2 immune response. SIGNIFICANCE: Our data indicate that mscs mediate their immunosuppressive effect via two modes of action: locally, they reduce inflammation through the secretion of anti-proliferative mediators, such as NO and mainly PGE2, and systemically they switch the host response from a Th1/Th17 towards a Th2 immune profile.


Assuntos
Artrite Experimental/metabolismo , Dinoprostona/metabolismo , Interleucina-6/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Artrite/metabolismo , Diferenciação Celular , Colágeno/metabolismo , Imunossupressores/química , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Células Th2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA