Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 282: 114493, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34364971

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) has been used as folk medicine in East Asia and has been reported to alleviate inflammatory diseases. However, the detailed mechanisms for the anti-inflammatory effects of C. obtusa remain unclear. AIM OF THE STUDY: Although the anti-inflammatory mechanisms of natural products have been studied for decades, it is still important to identify the potential anti-inflammatory effects of natural sources. In this study, we investigated the anti-inflammatory effects and underlying mechanism of C. obtusa leaf extracts. MATERIAL &METHODS: The cell viability was determined by MTT and crystal violet staining. NO production in the supernatant was measured using Griess reagent. The cell lysates were analyzed by immunoblotting and RT-qPCR. Secreted cytokines were analyzed using ELISA kit and cytokine array kit. mRNA expression from the GSE9632 database set. Z-scores were calculated for each gene and visualized by heat map. RESULTS: Among the extracts of C. obtusa obtained with different extraction methods, the 99% ethanol leaf extract (CO99EL) strongly inhibited lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression and Janus kinase/signaling transducer and activator of transcription (JAK/STAT) phosphorylation in RAW264.7 cells. In addition, CO99EL strongly inhibited LPS-induced interleukin (IL)-1ß, IL-6, IL-27, and C-C motif chemokine ligand (CCL)-1 production and directly inhibited LPS-induced JAK/STAT phosphorylation in RAW264.7 cells. CONCLUSIONS: These findings demonstrate that CO99EL significantly prevents LPS-induced macrophage activation by inhibiting the JAK/STAT axis. Therefore, we suggest the use of C. obtusa extracts as therapeutic approach for inflammatory diseases.


Assuntos
Chamaecyparis , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Janus Quinases/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Camundongos , Extratos Vegetais/farmacologia , Folhas de Planta , Células RAW 264.7 , Fatores de Transcrição STAT/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA