Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
mBio ; 13(5): e0218422, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094114

RESUMO

Inflammatory bowel diseases (IBD) are characterized by chronic inflammation of the gastrointestinal tract and profound alterations to the gut microbiome. Adherent-invasive Escherichia coli (AIEC) is a mucosa-associated pathobiont that colonizes the gut of patients with Crohn's disease, a form of IBD. Because AIEC exacerbates gut inflammation, strategies to reduce the AIEC bloom during colitis are highly desirable. To thrive in the inflamed gut, Enterobacteriaceae acquire the essential metal nutrient iron by producing and releasing siderophores. Here, we implemented an immunization-based strategy to target the siderophores enterobactin and its glucosylated derivative salmochelin to reduce the AIEC bloom in the inflamed gut. Using chemical (dextran sulfate sodium) and genetic (Il10-/- mice) IBD mouse models, we showed that immunization with enterobactin conjugated to the mucosal adjuvant cholera toxin subunit B potently elicited mucosal and serum antibodies against these siderophores. Siderophore-immunized mice exhibited lower AIEC gut colonization, diminished AIEC association with the gut mucosa, and reduced colitis severity. Moreover, Peyer's patches and the colonic lamina propria harbored enterobactin-specific B cells that could be identified by flow cytometry. The beneficial effect of siderophore immunization was primarily B cell-dependent because immunized muMT-/- mice, which lack mature B lymphocytes, were not protected during AIEC infection. Collectively, our study identified siderophores as a potential therapeutic target to reduce AIEC colonization and its association with the gut mucosa, which ultimately may reduce colitis exacerbation. Moreover, this work provides the foundation for developing monoclonal antibodies against siderophores, which could provide a narrow-spectrum strategy to target the AIEC bloom in Crohn's disease patients. IMPORTANCE Adherent-invasive Escherichia coli (AIEC) is abnormally prevalent in patients with ileal Crohn's disease and exacerbates intestinal inflammation, but treatment strategies that selectively target AIEC are unavailable. Iron is an essential micronutrient for most living organisms, and bacterial pathogens have evolved sophisticated strategies to capture iron from the host environment. AIEC produces siderophores, small, secreted molecules with a high affinity for iron. Here, we showed that immunization to elicit antibodies against siderophores promoted a reduction of the AIEC bloom, interfered with AIEC association with the mucosa, and mitigated colitis in experimental mouse models. We also established a flow cytometry-based approach to visualize and isolate siderophore-specific B cells, a prerequisite for engineering monoclonal antibodies against these molecules. Together, this work could lead to a more selective and antibiotic-sparing strategy to target AIEC in Crohn's disease patients.


Assuntos
Colite , Doença de Crohn , Infecções por Escherichia coli , Doenças Inflamatórias Intestinais , Camundongos , Animais , Sideróforos , Doença de Crohn/microbiologia , Interleucina-10 , Enterobactina , Sulfato de Dextrana , Toxina da Cólera , Escherichia coli/genética , Aderência Bacteriana , Colite/prevenção & controle , Colite/microbiologia , Mucosa Intestinal/microbiologia , Inflamação/complicações , Doenças Inflamatórias Intestinais/complicações , Imunização , Antibacterianos/farmacologia , Ferro , Anticorpos Monoclonais/farmacologia , Micronutrientes
2.
Metallomics ; 9(8): 1086-1095, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28561859

RESUMO

We report that the metal-sequestering human host-defense protein calprotectin (CP, S100A8/S100A9 oligomer) affects the redox speciation of iron (Fe) in bacterial growth media and buffered aqueous solution. Under aerobic conditions and in the absence of an exogenous reducing agent, CP-Ser (S100A8(C42S)/S100A9(C3S) oligomer) depletes Fe from three different bacterial growth media preparations over a 48 h timeframe (T = 30 °C). The presence of the reducing agent ß-mercaptoethanol accelerates this process and allows CP-Ser to deplete Fe over a ≈1 h timeframe. Fe-depletion assays performed with metal-binding-site variants of CP-Ser show that the hexahistidine (His6) site, which coordinates Fe(ii) with high affinity, is required for Fe depletion. An analysis of Fe redox speciation in buffer containing Fe(iii) citrate performed under aerobic conditions demonstrates that CP-Ser causes a time-dependent increase in the [Fe(ii)]/[Fe(iii)] ratio. Taken together, these results indicate that the hexahistidine site of CP stabilizes Fe(ii) and thereby shifts the redox equilibrium of Fe to the reduced ferrous state under aerobic conditions. We also report that the presence of bacterial metabolites affects the Fe-depleting activity of CP-Ser. Supplementation of bacterial growth media with an Fe(iii)-scavenging siderophore (enterobactin, staphyloferrin B, or desferrioxamine B) attenuates the Fe-depleting activity of CP-Ser. This result indicates that formation of Fe(iii)-siderophore complexes blocks CP-mediated reduction of Fe(iii) and hence the ability of CP to coordinate Fe(ii). In contrast, the presence of pyocyanin (PYO), a redox-cycling phenazine produced by Pseudomonas aeruginosa that reduces Fe(iii) to Fe(ii), accelerates Fe depletion by CP-Ser under aerobic conditions. These findings indicate that the presence of microbial metabolites that contribute to metal homeostasis at the host/pathogen interface can affect the metal-sequestering function of CP.


Assuntos
Quelantes de Ferro/metabolismo , Ferro/química , Ferro/metabolismo , Complexo Antígeno L1 Leucocitário/metabolismo , Fenazinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Sideróforos/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Oxirredução , Pseudomonas aeruginosa/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA