Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 282: 120404, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37806465

RESUMO

Despite the distortion of speech signals caused by unavoidable noise in daily life, our ability to comprehend speech in noisy environments is relatively stable. However, the neural mechanisms underlying reliable speech-in-noise comprehension remain to be elucidated. The present study investigated the neural tracking of acoustic and semantic speech information during noisy naturalistic speech comprehension. Participants listened to narrative audio recordings mixed with spectrally matched stationary noise at three signal-to-ratio (SNR) levels (no noise, 3 dB, -3 dB), and 60-channel electroencephalography (EEG) signals were recorded. A temporal response function (TRF) method was employed to derive event-related-like responses to the continuous speech stream at both the acoustic and the semantic levels. Whereas the amplitude envelope of the naturalistic speech was taken as the acoustic feature, word entropy and word surprisal were extracted via the natural language processing method as two semantic features. Theta-band frontocentral TRF responses to the acoustic feature were observed at around 400 ms following speech fluctuation onset over all three SNR levels, and the response latencies were more delayed with increasing noise. Delta-band frontal TRF responses to the semantic feature of word entropy were observed at around 200 to 600 ms leading to speech fluctuation onset over all three SNR levels. The response latencies became more leading with increasing noise and decreasing speech comprehension and intelligibility. While the following responses to speech acoustics were consistent with previous studies, our study revealed the robustness of leading responses to speech semantics, which suggests a possible predictive mechanism at the semantic level for maintaining reliable speech comprehension in noisy environments.


Assuntos
Compreensão , Percepção da Fala , Humanos , Compreensão/fisiologia , Semântica , Fala/fisiologia , Percepção da Fala/fisiologia , Eletroencefalografia , Acústica , Estimulação Acústica
2.
Neuroimage ; 194: 259-271, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30853565

RESUMO

Congenitally blind individuals have been shown to activate the visual cortex during non-visual tasks. The neuronal mechanisms of such cross-modal activation are not fully understood. Here, we used an auditory working memory training paradigm in congenitally blind and in sighted adults. We hypothesized that the visual cortex gets integrated into auditory working memory networks, after these networks have been challenged by training. The spectral profile of functional networks was investigated which mediate cross-modal reorganization following visual deprivation. A training induced integration of visual cortex into task-related networks in congenitally blind individuals was expected to result in changes in long-range functional connectivity in the theta-, beta- and gamma band (imaginary coherency) between visual cortex and working memory networks. Magnetoencephalographic data were recorded in congenitally blind and sighted individuals during resting state as well as during a voice-based working memory task; the task was performed before and after working memory training with either auditory or tactile stimuli, or a control condition. Auditory working memory training strengthened theta-band (2.5-5 Hz) connectivity in the sighted and beta-band (17.5-22.5 Hz) connectivity in the blind. In sighted participants, theta-band connectivity increased between brain areas typically involved in auditory working memory (inferior frontal, superior temporal, insular cortex). In blind participants, beta-band networks largely emerged during the training, and connectivity increased between brain areas involved in auditory working memory and as predicted, the visual cortex. Our findings highlight long-range connectivity as a key mechanism of functional reorganization following congenital blindness, and provide new insights into the spectral characteristics of functional network connectivity.


Assuntos
Ritmo beta/fisiologia , Cegueira/fisiopatologia , Memória de Curto Prazo/fisiologia , Córtex Visual/fisiologia , Córtex Visual/fisiopatologia , Estimulação Acústica , Adulto , Cegueira/congênito , Feminino , Humanos , Aprendizagem/fisiologia , Masculino , Vias Neurais/fisiopatologia
3.
Sci Rep ; 7(1): 16307, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176684

RESUMO

Recent studies support the view that cortical sensory, limbic and executive networks and the autonomic nervous system might interact in distinct manners under the influence of acupuncture to modulate pain. We performed a double-blind crossover design study to investigate subjective ratings, EEG and ECG following experimental laser pain under the influence of sham and verum acupuncture in 26 healthy volunteers. We analyzed neuronal oscillations and inter-regional coherence in the gamma band of 128-channel-EEG recordings as well as heart rate variability (HRV) on two experimental days. Pain ratings and pain-induced gamma oscillations together with vagally-mediated power in the high-frequency bandwidth (vmHF) of HRV decreased significantly stronger during verum than sham acupuncture. Gamma oscillations were localized in the prefrontal cortex (PFC), mid-cingulate cortex (MCC), primary somatosensory cortex and insula. Reductions of pain ratings and vmHF-power were significantly correlated with increase of connectivity between the insula and MCC. In contrast, connectivity between left and right PFC and between PFC and insula correlated positively with vmHF-power without a relationship to acupuncture analgesia. Overall, these findings highlight the influence of the insula in integrating activity in limbic-saliency networks with vagally mediated homeostatic control to mediate antinociception under the influence of acupuncture.


Assuntos
Analgesia por Acupuntura/métodos , Giro do Cíngulo/fisiopatologia , Dor/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Adulto , Análise de Variância , Córtex Cerebral/fisiopatologia , Método Duplo-Cego , Eletrocardiografia , Eletroencefalografia , Feminino , Voluntários Saudáveis , Frequência Cardíaca/fisiologia , Humanos , Masculino , Córtex Somatossensorial/fisiopatologia , Adulto Jovem
4.
Brain Topogr ; 28(6): 865-78, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25926268

RESUMO

High frequency oscillations in the gamma range are known to be involved in early stages of auditory information processing in terms of synchronization of brain regions, e.g., in cognitive functions. It has been shown using EEG source localisation, as well as simultaneously recorded EEG-fMRI, that the auditory evoked gamma-band response (aeGBR) is modulated by attention. In addition to auditory cortex activity a dorsal anterior cingulate cortex (dACC) generator could be involved. In the present study we investigated aeGBR magnetic fields using magnetoencephalography (MEG). We aimed to localize the aeGBR sources and its connectivity features in relation to mental effort. We investigated the aeGBR magnetic fields in 13 healthy participants using a 275-channel CTF-MEG system. The experimental paradigms were two auditory choice reaction tasks with different difficulties and demands for mental effort. We performed source localization with eLORETA and calculated the aeGBR lagged phase synchronization between bilateral auditory cortices and frontal midline structures. The eLORETA analysis revealed sources of the aeGBR within bilateral auditory cortices and in frontal midline structures of the brain including the dACC. Compared to the control condition the dACC source activity was found to be significantly stronger during the performance of the cognitively demanding task. Moreover, this task involved a significantly stronger functional connectivity between auditory cortices and dACC. In accordance with previous EEG and EEG-fMRI investigations, our study confirms an aeGBR generator in the dACC by means of MEG and suggests its involvement in the effortful processing of auditory stimuli.


Assuntos
Córtex Auditivo/fisiologia , Mapeamento Encefálico , Ritmo Gama/fisiologia , Estimulação Acústica , Adolescente , Adulto , Vias Auditivas/fisiologia , Eletroencefalografia , Processamento Eletrônico de Dados , Feminino , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Modelos Neurológicos , Adulto Jovem
5.
Phys Rev Lett ; 100(23): 234101, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18643502

RESUMO

We propose a new measure (phase-slope index) to estimate the direction of information flux in multivariate time series. This measure (a) is insensitive to mixtures of independent sources, (b) gives meaningful results even if the phase spectrum is not linear, and (c) properly weights contributions from different frequencies. These properties are shown in extended simulations and contrasted to Granger causality which yields highly significant false detections for mixtures of independent sources. An application to electroencephalography data (eyes-closed condition) reveals a clear front-to-back information flow.


Assuntos
Modelos Teóricos , Algoritmos , Córtex Cerebral/fisiologia , Interpretação Estatística de Dados , Eletroencefalografia , Análise de Fourier , Humanos , Modelos Neurológicos , Tálamo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA