Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Vet Med Sci ; 82(2): 184-187, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31904004

RESUMO

Toxoplasma gondii can cause severe encephalitis in immunocompromised patients. Although pyrimethamine and sulphadiazine have been standard therapeutic agents for the treatment of acute toxoplasmosis, they have toxic side effects. Therefore, there is a need to identify new drugs that are less toxic. Some traditional Chinese medicines (TCMs) have shown good efficacy in controlling T. gondii replication in mouse models. Here, we screened a natural product library comprising TCMs with the aim of identifying compounds and extracts with anti-toxoplasmosis activities. We found several hit compounds and extracts that could be candidates for new drugs against T. gondii infection.


Assuntos
Medicamentos de Ervas Chinesas/efeitos adversos , Medicamentos de Ervas Chinesas/farmacologia , Toxoplasma/efeitos dos fármacos , Animais , Antiprotozoários/efeitos adversos , Antiprotozoários/farmacologia , Linhagem Celular , Chlorocebus aethiops , Humanos , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/tratamento farmacológico , Células Vero
2.
Malar J ; 17(1): 244, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941026

RESUMO

BACKGROUND: Malaria is a major infectious disease in the world. In 2015, approximately 212 million people were infected and 429,000 people were killed by this disease. Plasmodium falciparum, which causes falciparum malaria, is becoming resistant to artemisinin (ART) in Southeast Asia; therefore, new anti-malarial drugs are urgently needed. Some excellent anti-malarial drugs, such as quinine or ART, were originally obtained from natural plants. Hence, the authors screened a natural product library comprising traditional Chinese medicines (TCMs) to identify compounds/extracts with anti-malarial effects. METHODS: The authors performed three assays: a malaria growth inhibition assay (GIA), a cytotoxicity assay, and a malaria stage-specific GIA. The malaria GIA revealed the anti-malarial ability and half-maximal inhibitory concentrations (IC50) of the natural products, whereas the malaria stage-specific GIA revealed the point in the malaria life cycle where the products exerted their anti-malarial effects. The toxicity of the products to the host cells was evaluated with the cytotoxicity assay. RESULTS: Four natural compounds (berberine chloride, coptisine chloride, palmatine chloride, and dehydrocorydaline nitrate) showed strong anti-malarial effects (IC50 < 50 nM), and low cytotoxicity (cell viability > 90%) using P. falciparum 3D7 strain. Two natural extracts (Phellodendri cortex and Coptidis rhizoma) also showed strong antiplasmodial effects (IC50 < 1 µg/ml), and low cytotoxicity (cell viability > 80%). These natural products also demonstrated anti-malarial capability during the trophozoite and schizont stages of the malaria life cycle. CONCLUSIONS: The authors identified four compounds (berberine chloride, coptisine chloride, palmatine chloride, and dehydrocorydaline nitrate) and two extracts (Phellodendri cortex and Coptidis rhizoma) with anti-malarial activity, neither of which had previously been described. The IC50 values of the compounds were comparable to that of chloroquine and better than that of pyrimethamine. These compounds and extracts derived from TCMs thus show promise as potential future anti-malarial drugs.


Assuntos
Antimaláricos/farmacologia , Medicina Tradicional Chinesa , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Humanos , Malária Falciparum/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA