Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PeerJ ; 7: e6324, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30755827

RESUMO

BACKGROUND: Mangosteen (Garcinia mangostana L.) fruit has a unique sweet-sour taste and is rich in beneficial compounds such as xanthones. Mangosteen originally been used in various folk medicines to treat diarrhea, wounds, and fever. More recently, it had been used as a major component in health supplement products for weight loss and for promoting general health. This is perhaps due to its known medicinal benefits, including as anti-oxidant and anti-inflammation. Interestingly, publications related to mangosteen have surged in recent years, suggesting its popularity and usefulness in research laboratories. However, there are still no updated reviews (up to 2018) in this booming research area, particularly on its metabolite composition and medicinal benefits. METHOD: In this review, we have covered recent articles within the years of 2016 to 2018 which focus on several aspects including the latest findings on the compound composition of mangosteen fruit as well as its medicinal usages. RESULT: Mangosteen has been vastly used in medicinal areas including in anti-cancer, anti-microbial, and anti-diabetes treatments. Furthermore, we have also described the benefits of mangosteen extract in protecting various human organs such as liver, skin, joint, eye, neuron, bowel, and cardiovascular tissues against disorders and diseases. CONCLUSION: All in all, this review describes the numerous manipulations of mangosteen extracted compounds in medicinal areas and highlights the current trend of its research. This will be important for future directed research and may allow researchers to tackle the next big challenge in mangosteen study: drug development and human applications.

2.
Sci Rep ; 8(1): 4202, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523802

RESUMO

Polygonumins A, a new compound, was isolated from the stem of Polygonum minus. Based on NMR results, the compound's structure is identical to that of vanicoside A, comprising four phenylpropanoid ester units and a sucrose unit. The structure differences were located at C-3″″'. The cytotoxic activity of polygonumins A was evaluated on several cancer cell lines by a cell viability assay using tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The compound showed the highest antiproliferative (p < 0.05) activities against K562 (Human Leukaemia Cell Line), MCF7 (Human breast adenocarcinoma cell line), and HCT116 (Colorectal cancer cells) cells. Cytotoxic studies against V79-4 cells were carried out and showed that polygonumins A was toxic at 50 µg/ml, suggesting that this compound may be used as an anticancer drug without affecting normal cells. Polygonumins A also showed promising activity as an HIV-1 protease inhibitor with 56% relative inhibition. Molecular docking results indicated that the compound possesses high binding affinity towards the HIV protease over the low binding free energy range of -10.5 to -11.3 kcal/mol. P. minus is used in Malaysian traditional medicine for the treatment of tumour cells. This is the first report on the use of P. minus as an HIV-1 protease inhibitor.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Caules de Planta/química , Polygonum/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cinamatos/química , Protease de HIV/química , Protease de HIV/metabolismo , Inibidores da Protease de HIV/isolamento & purificação , Inibidores da Protease de HIV/metabolismo , Humanos , Microscopia Eletrônica de Transmissão e Varredura , Simulação de Acoplamento Molecular , Domínios Proteicos
3.
Artigo em Inglês | MEDLINE | ID: mdl-26413127

RESUMO

Sauropus androgynus L. Merr. is one of the most popular herbs in South Asia, Southeast Asia, and China where it was known as a slimming agent until two outbreaks of pulmonary dysfunction were reported in Taiwan and Japan in 1995 and 2005, respectively. Several studies described that the excessive consumption of Sauropus androgynus could cause drowsiness, constipation, and bronchiolitis obliterans and may lead to respiratory failure. Interestingly, this herb has been used in Malaysia and Indonesia in cooking and is commonly called the "multigreen" or "multivitamin" plant due to its high nutritive value and inexpensive source of dietary protein. The plant is widely used in traditional medicine for wound healing, inducing lactation, relief of urinary disorders, as an antidiabetic cure and also fever reduction. Besides these medicinal uses, the plant can also be used as colouring agent in food. This review will explore and compile the fragmented knowledge available on the botany, ethnobotany, chemical constitutes, pharmacological properties, and toxicological aspects of this plant. This comprehensive review will give readers the fundamental, comprehensive, and current knowledge regarding Sauropus androgynus L. Merr.

4.
Cryo Letters ; 32(3): 188-96, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21766148

RESUMO

The effects of sucrose preculture duration and loading treatment on tolerance of Garcinia cowa shoot tips to cryopreservation using the PVS2 vitrification solution were investigated. Ultrastructural changes in meristematic cells at the end of the preculture and loading steps were followed in an attempt to understand the effects of these treatments on structural changes in cell membranes and organelles. Increasing preculture duration on 0.3 M sucrose medium from 0 to 3 days enhanced tolerance to PVS2 solution from 5.6 percent (no preculture) to 49.2 percent (3-day preculture). However, no survival was observed after cryopreservation. Examination of meristematic cells by transmission electron microscopy revealed the progressive accumulation of an electron-dense substance in line with increasing exposure durations to 0.3 M sucrose preculture. Treatment with a loading solution (2 M glycerol + 0.4 M sucrose) decreased tolerance of shoot tips to PVS2 vitrification solution and had a deleterious effect on the ultrastructure of G. cowa meristematic cells. This study suggests that G. cowa meristematic cells may lose their structural integrity due to exposure to glycerol present in the loading solution at a 2 M concentration, either due to its high osmotic potential, or due to its cytotoxicity.


Assuntos
Criopreservação/métodos , Garcinia/citologia , Meristema/citologia , Brotos de Planta/citologia , Sementes/citologia , Sacarose/farmacologia , Vitrificação/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Crioprotetores/farmacologia , Glicerol/farmacologia , Meristema/ultraestrutura , Microscopia Eletrônica de Transmissão , Brotos de Planta/ultraestrutura , Sementes/ultraestrutura
5.
Molecules ; 15(10): 7006-15, 2010 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-20944520

RESUMO

The essential oil in leaves of Polygonum minus Huds., a local aromatic plant, were identified by a pipeline of gas chromatography (GC) techniques coupled with mass-spectrometry (MS), flame ionization detector (FID) and two dimensional gas chromatography time of flight mass spectrometry (GC x GC-TOF MS). A total of 48 compounds with a good match and high probability values were identified using this technique. Meanwhile, 42 compounds were successfully identified in this study using GC-MS, a significantly larger number than in previous studies. GC-FID was used in determining the retention indices of chemical components in P. minus essential oil. The result also showed the efficiency and reliability were greatly improved when chemometric methods and retention indices were used in identification and quantification of chemical components in plant essential oil.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Óleos Voláteis/análise , Óleos de Plantas/análise , Polygonum/química , Ionização de Chama/instrumentação , Ionização de Chama/métodos , Cromatografia Gasosa-Espectrometria de Massas/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA