Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rev Soc Bras Med Trop ; 55: e0590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36169491

RESUMO

BACKGROUND: Based on the current need for new drugs against malaria, our study evaluated eight beta amino ketones in silico and in vitro for potential antimalarial activity. METHODS: Using the Brazilian Malaria Molecular Targets (BraMMT) and OCTOPUS® software programs, the pattern of interactions of beta-amino ketones was described against different proteins of P. falciparum and screened to evaluate their physicochemical properties. The in vitro antiplasmodial activities of the compounds were evaluated using a SYBR Green-based assay. In parallel, in vitro cytotoxic data were obtained using the MTT assay. RESULTS: Among the eight compounds, compound 1 was the most active and selective against P. falciparum (IC50 = 0.98 µM; SI > 60). Six targets were identified in BraMMT that interact with compounds exhibiting a stronger binding energy than the crystallographic ligand: P. falciparum triophosphate phosphoglycolate complex (1LYX), P. falciparum reductase (2OK8), PfPK7 (2PML), P. falciparum glutaredoxin (4N0Z), PfATP6, and PfHT. CONCLUSIONS: The physicochemical properties of compound 1 were compatible with the set of criteria established by the Lipinski rule and demonstrated its potential as a drug prototype for antiplasmodial activity.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Glutarredoxinas/uso terapêutico , Humanos , Cetonas/farmacologia , Cetonas/uso terapêutico , Ligantes , Malária Falciparum/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Plasmodium falciparum
2.
Mem Inst Oswaldo Cruz ; 114: e180465, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30810604

RESUMO

BACKGROUND: Owing to increased spending on pharmaceuticals since 2010, discussions about rising costs for the development of new medical technologies have been focused on the pharmaceutical industry. Computational techniques have been developed to reduce costs associated with new drug development. Among these techniques, virtual high-throughput screening (vHTS) can contribute to the drug discovery process by providing tools to search for new drugs with the ability to bind a specific molecular target. OBJECTIVES: In this context, Brazilian malaria molecular targets (BraMMT) was generated to execute vHTS experiments on selected molecular targets of Plasmodium falciparum. METHODS: In this study, 35 molecular targets of P. falciparum were built and evaluated against known antimalarial compounds. FINDINGS: As a result, it could predict the correct molecular target of market drugs, such as artemisinin. In addition, our findings suggested a new pharmacological mechanism for quinine, which includes inhibition of falcipain-II and a potential new antimalarial candidate, clioquinol. MAIN CONCLUSIONS: The BraMMT is available to perform vHTS experiments using OCTOPUS or Raccoon software to improve the search for new antimalarial compounds. It can be retrieved from www.drugdiscovery.com.br or download of Supplementary data.


Assuntos
Antimaláricos/química , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Simulação de Acoplamento Molecular/métodos , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/farmacologia , Brasil , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Plasmodium falciparum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA