Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytother Res ; 38(6): 3146-3168, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38616386

RESUMO

Hypertension, or high blood pressure (BP), is a complex disease influenced by various risk factors. It is characterized by persistent elevation of BP levels, typically exceeding 140/90 mmHg. Endothelial dysfunction and reduced nitric oxide (NO) bioavailability play crucial roles in hypertension development. L-NG-nitro arginine methyl ester (L-NAME), an analog of L-arginine, inhibits endothelial NO synthase (eNOS) enzymes, leading to decreased NO production and increased BP. Animal models exposed to L-NAME manifest hypertension, making it a useful design for studying the hypertension condition. Natural products have gained interest as alternative approaches for managing hypertension. Flavonoids, abundant in fruits, vegetables, and other plant sources, have potential cardiovascular benefits, including antihypertensive effects. Flavonoids have been extensively studied in cell cultures, animal models, and, to lesser extent, in human trials to evaluate their effectiveness against L-NAME-induced hypertension. This comprehensive review summarizes the antihypertensive activity of specific flavonoids, including quercetin, luteolin, rutin, troxerutin, apigenin, and chrysin, in L-NAME-induced hypertension models. Flavonoids possess antioxidant properties that mitigate oxidative stress, a major contributor to endothelial dysfunction and hypertension. They enhance endothelial function by promoting NO bioavailability, vasodilation, and the preservation of vascular homeostasis. Flavonoids also modulate vasoactive factors involved in BP regulation, such as angiotensin-converting enzyme (ACE) and endothelin-1. Moreover, they exhibit anti-inflammatory effects, attenuating inflammation-mediated hypertension. This review provides compelling evidence for the antihypertensive potential of flavonoids against L-NAME-induced hypertension. Their multifaceted mechanisms of action suggest their ability to target multiple pathways involved in hypertension development. Nonetheless, the reviewed studies contribute to the evidence supporting the useful of flavonoids for hypertension prevention and treatment. In conclusion, flavonoids represent a promising class of natural compounds for combating hypertension. This comprehensive review serves as a valuable resource summarizing the current knowledge on the antihypertensive effects of specific flavonoids, facilitating further investigation and guiding the development of novel therapeutic strategies for hypertension management.


Assuntos
Anti-Hipertensivos , Flavonoides , Hipertensão , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/química , Flavonoides/farmacologia , Flavonoides/química , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/induzido quimicamente , Animais , Antioxidantes/farmacologia , Óxido Nítrico/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos
2.
Heliyon ; 9(10): e20889, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37867816

RESUMO

Polycystic Ovary Syndrome (PCOS) is a common endocrine disorder with a worldwide prevalence of 6-10 % of women of reproductive age. PCOS is a risk factor for cardiometabolic disorders such as type 2 diabetes, myocardial infarction, and stroke in addition to exhibiting signs of hyperandrogenism and anovulation. However, there is no known cure for PCOS, and medications have only ever been used symptomatically, with a variety of adverse effects. Drugs made from natural plant products may help treat PCOS because several plant extracts have been widely recognized to lessen the symptoms of PCOS. In light of this, 72 current studies on natural products with the potential to control PCOS were examined. By controlling the PI3K/AKT signaling pathway and decreasing NF-κB and cytokines such as tumor necrosis factor (TNF), interleukin-1 (IL-1), and interleukin-6 (IL-6), certain plant-derived chemicals might reduce inflammation. Other substances altered the HPO axis, which normalized hormones. Additionally, other plant components increased glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) levels to reduce radiation-induced oxidative stress. The other substances prevented autophagy by impairing beclin 1, autophagy-related 5 (ATG5), and microtubule-associated protein 1A/1B-light chain 3 - II (LC3- II). The main focus of this comprehensive review is the possibility of plant extracts as natural bio-resources of PCOS treatment by regulating inflammation, hormones, reactive oxygen species (ROS), or autophagy.

3.
Molecules ; 28(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37764380

RESUMO

Obesity is a global issue faced by many individuals worldwide. However, no drug has a pronounced effect with few side effects. Green tea, a well-known natural product, shows preventive effects against obesity by decreasing lipogenesis and increasing fat oxidation and antioxidant capacity. In contrast, other natural products are known to contribute to obesity. Relevant articles published on the therapeutic effect of natural products on obesity were retrieved from PubMed, Web of Science, and Scopus. The search was conducted by entering keywords such as "obesity", "natural product", and "clinical trial". The natural products were classified as single compounds, foods, teas, fruits, herbal medicines-single extract, herbal medicines-decoction, and herbal medicines-external preparation. Then, the mechanisms of these medicines were organized into lipid metabolism, anti-inflammation, antioxidation, appetite loss, and thermogenesis. This review aimed to assess the efficacy and mechanisms of effective natural products in managing obesity. Several clinical studies reported that natural products showed antiobesity effects, including Coffea arabica (coffee), Camellia sinensis (green tea), Caulerpa racemosa (green algae), Allium sativum (garlic), combined Ephedra intermedia Schrenk, Thea sinensis L., and Atractylodes lancea DC extract (known as Gambisan), Ephedra sinica Stapf, Angelica Gigantis Radix, Atractylodis Rhizoma Alba, Coicis semen, Cinnamomi cortex, Paeoniae radix alba, and Glycyrrhiza uralensis (known as Euiiyin-tang formula). Further studies are expected to refine the pharmacological effects of natural products for clinical use.


Assuntos
Allium , Produtos Biológicos , Camellia sinensis , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Preparações de Plantas , Chá , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico
4.
Clin Nutr ESPEN ; 56: 81-82, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37344087

RESUMO

Potential studies and evidence regarding nutrient nanoencapsulation combined with emulsion-based delivery systems are relatively limited. Therefore, for the importance issue of health vision, with this critical opinion to the editor is scientifically important to invite worldwide researchers to raise their concern for clinical research and the development of plant-based lutein nanoencapsulation in staple foods in alleviating nutritional problems for the eyes, which has not been reported before. This is in line with the WHO World Report which aimed to overcome the challenge regarding vision and galvanizing action, one of which is through innovation and research. With the hypothesis that, through this opinion will increase the awareness of scientists to improve clinical studies on the stability and bioaccessibility of lutein for health vision concern. As our hypothesis and objectives, we hope that this critical short opinion to the editor will assist efforts to reduce the burden of eye conditions and vision loss to achieve the Sustainable Development Goals (SDGs), particularly SDG 3.8 on universal health coverage through lutein-plant based nanoencapsulation clinical studies by worldwide researchers. Finally, it is very important and needed an effort to improve clinical studies focus on the stability and bioaccessibility of lutein for health vision via lutein-plant based nanoencapsulation approaches. Moreover, the benefit of lutein supplementation for the health vision might be limited by its bioaccessibility and bioavailability. Future studies and approaches should employ strategies that could overcome the foregoing limitations, of which is through nanoencapsulation approach. Something new has been synthesized in this work, "Because, every human eye, is the eye of the world".


Assuntos
Composição de Medicamentos , Luteína , Nanotecnologia , Humanos
5.
Molecules ; 28(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050034

RESUMO

Green alga Caulerpa racemosa is an underexploited species of macroalgae, even though it is characterized by a green color that indicates an abundance of bioactive pigments, such as chlorophyll and possibly xanthophyll. Unlike chlorophyll, which has been well explored, the composition of the carotenoids of C. racemosa and its biological activities have not been reported. Therefore, this study aims to look at the carotenoid profile and composition of C. racemose and determine their biological activities, which include antidiabetic, anti-obesity, anti-oxidative, anti-inflammatory, and cytotoxicity in vitro. The detected carotenoids were all xanthophylls, which included fucoxanthin, lutein, astaxanthin, canthaxanthin, zeaxanthin, ß-carotene, and ß-cryptoxanthin based on orbitrap-mass spectrometry (MS) and a rapid ultra-high performance liquid chromatography (UHPLC) diode array detector. Of the seven carotenoids observed, it should be highlighted that ß-carotene and canthaxanthin were the two most dominant carotenoids present in C. racemosa. Interestingly, the carotenoid extract of C. racemosa has good biological activity in inhibiting α-glucosidase, α-amylase, DPPH and ABTS, and the TNF-α and mTOR, as well as upregulating the AMPK, which makes it a drug candidate or functional antidiabetic food, a very promising anti-obesity and anti-inflammatory. More interestingly, the cytotoxicity value of the carotenoid extract of C. racemosa shows a level of safety in normal cells, which makes it a potential for the further development of nutraceuticals and pharmaceuticals.


Assuntos
Caulerpa , Clorófitas , Carotenoides/química , Antioxidantes/química , beta Caroteno/química , Cantaxantina , Hipoglicemiantes/farmacologia , Luteína/química , Zeaxantinas , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química
6.
Nutrients ; 15(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36839268

RESUMO

This study evaluated the effects of an aqueous extract of Caulerpa racemosa (AEC) on cardiometabolic syndrome markers, and the modulation of the gut microbiome in mice administered a cholesterol- and fat-enriched diet (CFED). Four groups of mice received different treatments: normal diet, CFED, and CFED added with AEC extract at 65 and 130 mg/kg body weight (BW). The effective concentration (EC50) values of AEC for 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and lipase inhibition were lower than those of the controls in vitro. In the mice model, the administration of high-dose AEC showed improved lipid and blood glucose profiles and a reduction in endothelial dysfunction markers (PRMT-1 and ADMA). Furthermore, a correlation between specific gut microbiomes and biomarkers associated with cardiometabolic diseases was also observed. In vitro studies highlighted the antioxidant properties of AEC, while in vivo data demonstrated that AEC plays a role in the management of cardiometabolic syndrome via regulation of oxidative stress, inflammation, endothelial function (PRMT-1/DDAH/ADMA pathway), and gut microbiota.


Assuntos
Caulerpa , Microbioma Gastrointestinal , Síndrome Metabólica , Extratos Vegetais , Animais , Camundongos , Arginina/metabolismo , Caulerpa/química , Suplementos Nutricionais , Endotélio/metabolismo , Extratos Vegetais/administração & dosagem
7.
Clin Nutr ESPEN ; 49: 232-240, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35623818

RESUMO

BACKGROUND AND AIMS: Obesity is currently a global issue and is a major cause of the metabolic disorder, including dyslipidemia. However, currently approved treatments have various limitations including serious side effects, numerous contraindications, and lack of acceptance. Caulerpa racemosa, also referred as Sea grapes, is a seaweed known for its various benefits. C. racemosa extract has the potential to improve lipid profile and role as an anti-obese agent. In order to maximize its health benefits, C. racemosa was made using kombucha drink as a carrier medium. This study aims to assess the effect of Sea grapes kombucha drink on lipase activity in vitro and lipid profile in vivo. METHODS: A lipase inhibition test was carried out by incubating Sea grapes kombucha drink compared with orlistat as the control in porcine pancreatic lipase and p-nitrophenyl butyrate in reaction buffer. A total of four groups were made, each containing 10 male swiss webster albino mice; group A received standard dry pellet diet as control, group B received cholesterol and fat-enriched diets (CFED), group C and D received CFED and 150 and 300 mg/kgBW of kombucha drink from Sea grapes respectively for 4 weeks. RESULTS: Sea grapes kombucha drink improved lipid profiles in the way of reducing total cholesterol, triglyceride, LDL, and increasing HDL levels compared to CFED and normal groups. The effect was more robust following the incrementing dose of the Sea grapes excluding total cholesterol. The lipase inhibitory activity of Sea grapes kombucha drink was similar to orlistat at a dose of 250 µg/mL, otherwise, orlistat was superior in the lower doses. CONCLUSIONS: Sea grapes kombucha drink treatment also induced weight loss and increased level of liver SOD. Kombucha drink from C. racemosa has good potential as a functional beverage with anti-obese and lipid improving activity.


Assuntos
Caulerpa , Vitis , Animais , Bebidas , Caulerpa/metabolismo , Colesterol , Humanos , Chá de Kombucha , Lipase/metabolismo , Lipase/uso terapêutico , Masculino , Camundongos , Obesidade/tratamento farmacológico , Orlistate/uso terapêutico , Suínos , Triglicerídeos , Vitis/metabolismo
8.
F1000Res ; 10: 718, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35136575

RESUMO

Background: Sea grapes or  Caulerpa racemosa have a lot of phytochemical content, especially unsaturated fatty acids that are beneficial for health. This study aims to evaluate the effects of sea grapes extract on blood glucose levels, total cholesterol-, and Peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α in male Wistar rats, which were given per-oral (p.o.) cholesterol- and carbohydrates fat-enriched diets (CFED). Methods: Forty male Wistar albino rats weighing between 200 - 250 g were used for this study. Animals were randomly distributed into four groups of ten animals each. Group A served as control (received standard dry pellet diet). Rats in group B were fed on CFED for 4 weeks.  Groups C and D were fed on CFED and were administered 150 and 450 mg/kg of  sea grapes extract (p.o.), respectively. Results: Group C rats indicated a blood glucose reduction and an increase in PGC-1α serum, in comparison to group D (p<0.05). There were no significant differences between group C and D in blood cholesterol reduction (high dose of the extract did not have significant effects) (p=0.222), and both groups had the same effect in lowering total cholesterol in rats.  Conclusion: Sea grapes extract is proven to improve blood glucose, total cholesterol, and PGC-1α levels in rats fed with CFED.


Assuntos
Glicemia , Vitis , Animais , Colesterol , Dieta , Masculino , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
9.
F1000Res ; 10: 1021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38107666

RESUMO

Background: Pinang yaki has bioactive compounds that have potential as a new herbal supplement. A better understanding of the bioactive compounds of pinang yaki using untargeted metabolomic profiling studies will provide clearer insight into the health benefits of pinang yaki and in particular its potential for the therapy and prevention of Covid-19.   Methods: Fresh samples of pinang yaki ( Areca vestiaria) are obtained from forests in North Sulawesi Province, Indonesia. Samples were used for untargeted metabolomics analysis by UPLC-MS.   Results: Based on an untargeted metabolomic profiling study of pinang yaki, 2504 compounds in ESI- and 2645 compounds in ESI+ were successfully obtained. After the analysis, 356 compounds in ESI- and 543 compounds in ESI+ were identified successfully. Major compounds Alpha-Chlorohydrin (PubChem ID: 7290) and Tagatose (PubChem ID: 439312) were found in ESI+ and ESI-.   Discussion: The Top 10 metabolites from pinang yaki extract (ESI+) juga have been indicated in preventing SARS Cov2 infection and have exhibited good neuroprotective immunity. Benzothiazole (PubChem ID: 7222), L-isoleucine (PubChem ID: 6306), D-glucono-delta-lactone (PubChem ID: 736), Diethylpyrocarbonate (PubChem ID: 3051), Bis(2-Ethylhexyl) amine (PubChem ID: 7791), Cinnamic acid (PubChem ID: 444539), and Trigonelline (PubChem ID: 5570) also had potential effects as an antiviral, anti-inflammatory, and anti-Covid19.   Conclusion: Untargeted metabolomic profiling showed many bioactive compounds contained in pinang yaki ( Areca vestiaria) extract. The top 10 compounds have been identified and explored for their potential benefits as anti-Covid19 supplement products. This is a preliminary study which still needs further research such as preclinical and clinical trials.


Assuntos
Areca , Frutas , Cromatografia Líquida , Espectrometria de Massas em Tandem , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA