Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Haematologica ; 103(9): 1472-1483, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29880605

RESUMO

Acute myeloid leukemia is a disorder characterized by abnormal differentiation of myeloid cells and a clonal proliferation derived from primitive hematopoietic stem cells. Interventions that overcome myeloid differentiation have been shown to be a promising therapeutic strategy for acute myeloid leukemia. In this study, we demonstrate that CRISPR/Cas9-mediated knockout of dihydroorotate dehydrogenase leads to apoptosis and normal differentiation of acute myeloid leukemia cells, indicating that dihydroorotate dehydrogenase is a potential differentiation regulator and a therapeutic target in acute myeloid leukemia. By screening a library of natural products, we identified a novel dihydroorotate dehydrogenase inhibitor, isobavachalcone, derived from the traditional Chinese medicine Psoralea corylifolia Using enzymatic analysis, thermal shift assay, pull down, nuclear magnetic resonance, and isothermal titration calorimetry experiments, we demonstrate that isobavachalcone inhibits human dihydroorotate dehydrogenase directly, and triggers apoptosis and differentiation of acute myeloid leukemia cells. Oral administration of isobavachalcone suppresses subcutaneous HL60 xenograft tumor growth without obvious toxicity. Importantly, our results suggest that a combination of isobavachalcone and adriamycin prolonged survival in an intravenous HL60 leukemia model. In summary, this study demonstrates that isobavachalcone triggers apoptosis and differentiation of acute myeloid leukemia cells via pharmacological inhibition of human dihydroorotate dehydrogenase, offering a potential therapeutic strategy for acute myeloid leukemia.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Animais , Apoptose/genética , Biomarcadores Tumorais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalconas/química , Chalconas/farmacologia , Di-Hidro-Orotato Desidrogenase , Modelos Animais de Doenças , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidade , Camundongos , Modelos Moleculares , Estrutura Molecular , Células-Tronco Neoplásicas/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Prognóstico , Interferência de RNA , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biophys J ; 98(11): 2644-52, 2010 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-20513409

RESUMO

Antimicrobial peptides (AMPs) are an emerging class of antibiotics for controlling health effects of antibiotic-resistant microbial strains. Protegrin-1 (PG-1) is a model antibiotic among beta-sheet AMPs. Antibiotic activity of AMPs involves cell membrane damage, yet their membrane interactions, their 3D membrane-associated structures and the mechanism underlying their ability to disrupt cell membrane are poorly understood. Using complementary approaches, including molecular dynamics simulations, atomic force microscopy (AFM) imaging, and planar lipid bilayer reconstitution, we provide computational and experimental evidence that PG-1, a beta-hairpin peptide, forms ion channels. Simulations indicate that PG-1 forms channel-like structures with loosely attached subunits when reconstituted in anionic lipid bilayers. AFM images show the presence of channel-like structures when PG-1 is reconstituted in dioleoylphosphatidylserine/palmitoyloleoyl phosphatidylethanolamine bilayers or added to preformed bilayers. Planar lipid bilayer electrical recordings show multiple single channel conductances that are consistent with the heterogeneous oligomeric channel structures seen in AFM images. PG-1 channel formation seems to be lipid-dependent: PG-1 does not easily show ion channel electrical activity in phosphatidylcholine membranes, but readily shows channel activity in membranes rich in phosphatidylethanolamine or phosphatidylserine. The combined results support a model wherein the beta-hairpin PG-1 peptide acts as an antibiotic by altering cell ionic homeostasis through ion channel formation in cell membranes.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Animais , Condutividade Elétrica , Bicamadas Lipídicas/química , Potenciais da Membrana , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Fosfatidiletanolaminas/química , Fosfatidilserinas/química , Probabilidade , Estrutura Secundária de Proteína , Suínos
3.
Proc Natl Acad Sci U S A ; 107(14): 6538-43, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20308552

RESUMO

Full-length amyloid beta peptides (Abeta(1-40/42)) form neuritic amyloid plaques in Alzheimer's disease (AD) patients and are implicated in AD pathology. However, recent transgenic animal models cast doubt on their direct role in AD pathology. Nonamyloidogenic truncated amyloid-beta fragments (Abeta(11-42) and Abeta(17-42)) are also found in amyloid plaques of AD and in the preamyloid lesions of Down syndrome, a model system for early-onset AD study. Very little is known about the structure and activity of these smaller peptides, although they could be the primary AD and Down syndrome pathological agents. Using complementary techniques of molecular dynamics simulations, atomic force microscopy, channel conductance measurements, calcium imaging, neuritic degeneration, and cell death assays, we show that nonamyloidogenic Abeta(9-42) and Abeta(17-42) peptides form ion channels with loosely attached subunits and elicit single-channel conductances. The subunits appear mobile, suggesting insertion of small oligomers, followed by dynamic channel assembly and dissociation. These channels allow calcium uptake in amyloid precursor protein-deficient cells. The channel mediated calcium uptake induces neurite degeneration in human cortical neurons. Channel conductance, calcium uptake, and neurite degeneration are selectively inhibited by zinc, a blocker of amyloid ion channel activity. Thus, truncated Abeta fragments could account for undefined roles played by full length Abetas and provide a unique mechanism of AD and Down syndrome pathologies. The toxicity of nonamyloidogenic peptides via an ion channel mechanism necessitates a reevaluation of the current therapeutic approaches targeting the nonamyloidogenic pathway as avenue for AD treatment.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Síndrome de Down/metabolismo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/ultraestrutura , Cálcio/metabolismo , Morte Celular , Síndrome de Down/patologia , Humanos , Microscopia de Força Atômica , Modelos Moleculares , Fragmentos de Peptídeos/ultraestrutura , Estrutura Terciária de Proteína
4.
J Chem Inf Model ; 49(10): 2333-43, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19803502

RESUMO

Virtual screening is emerging as a productive and cost-effective technology in rational drug design for the identification of novel lead compounds. An important model for virtual screening is the pharmacophore. Pharmacophore is the spatial configuration of essential features that enable a ligand molecule to interact with a specific target receptor. In the absence of a known receptor structure, a pharmacophore can be identified from a set of ligands that have been observed to interact with the target receptor. Here, we present a novel computational method for pharmacophore detection and virtual screening. The pharmacophore detection module is able to (i) align multiple flexible ligands in a deterministic manner without exhaustive enumeration of the conformational space, (ii) detect subsets of input ligands that may bind to different binding sites or have different binding modes, (iii) address cases where the input ligands have different affinities by defining weighted pharmacophores based on the number of ligands that share them, and (iv) automatically select the most appropriate pharmacophore candidates for virtual screening. The algorithm is highly efficient, allowing a fast exploration of the chemical space by virtual screening of huge compound databases. The performance of PharmaGist was successfully evaluated on a commonly used data set of G-Protein Coupled Receptor alpha1A. Additionally, a large-scale evaluation using the DUD (directory of useful decoys) data set was performed. DUD contains 2950 active ligands for 40 different receptors, with 36 decoy compounds for each active ligand. PharmaGist enrichment rates are comparable with other state-of-the-art tools for virtual screening.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Interface Usuário-Computador , Benchmarking , Sítios de Ligação , Ligantes , Modelos Moleculares , Conformação Molecular , Curva ROC , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química
5.
Biomacromolecules ; 8(10): 3135-46, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17854222

RESUMO

In this work we used atomistic molecular dynamics simulations to examine different aspects of tubular nanostructures constructed using protein building blocks with a beta-helical conformation. Initially, we considered two different natural protein building blocks, which were extracted from the protein data base, to compare the relative stabilities of the nanotubes obtained made of self-assembled and covalently linked repeats. Results show nanotubes constructed by linking building blocks through covalent bonds are very stable suggesting that the basic principles of polymer physics are valid when the repeating units are made of large fragments of proteins. In contrast, the stability of self-assembled nanostructures strongly depends on the attractive nonbonding interactions associated to building blocks aligned in a complementary manner. On the other hand, we investigated the ability of a conformationally constrained synthetic amino acid to enhance the stability of both self-assembled and polymerized nanotubes when it is used to substitute natural residues. Specifically, we considered 1-aminocyclopentane-1-caboxylic acid, which involves strong stereochemical constraints produced by the cyclopentane side chain. We found that the incorporation of this amino acid within the more flexible regions of the beta-helical building blocks is an excellent strategy to enhance the stability of the nanotubes. Thus, when a single mutation is performed in the loop region of the beta-helix, the bend architecture of the whole loop is stabilized since the conformational mobility is reduced not only at the mutated position but also at the adjacent positions.


Assuntos
Materiais Biocompatíveis/química , Mutação , Proteínas/química , Simulação por Computador , Cicloleucina/química , Glicina/química , Cinética , Conformação Molecular , Nanopartículas/química , Nanotubos/química , Polímeros/química , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas/genética , Sódio/química , Software , Estereoisomerismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA