Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Affect Disord ; 342: 85-90, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714385

RESUMO

BACKGROUND: Transcutaneous cervical vagus nerve stimulation (tcVNS) has emerged as a potential treatment strategy for patients with stress-related psychiatric disorders. Ghrelin is a hormone that has been postulated to be a biomarker of stress. While the mechanisms of action of tcVNS are unclear, we hypothesized that tcVNS reduces the levels of ghrelin in response to stress. METHODS: Using a randomized double-blind approach, we studied the effects of tcVNS on ghrelin levels in individuals with a history of exposure to traumatic stress. Participants received either sham (n = 29) or active tcVNS (n = 26) after exposure to acute personalized traumatic script stress and mental stress challenges (public speech, mental arithmetic) over a three day period. RESULTS: There were no significant differences in the levels of ghrelin between the tcVNS and sham stimulation groups at either baseline or in the absence of trauma scripts. However, tcVNS in conjunction with personalized traumatic scripts resulted in lower ghrelin levels compared to the sham stimulation group (265.2 ± 143.6 pg/ml vs 478.7 ± 349.2 pg/ml, P = 0.01). Additionally, after completing the public speaking and mental arithmetic tests, ghrelin levels were found to be lower in the group receiving tcVNS compared to the sham group (293.3 ± 102.4 pg/ml vs 540.3 ± 203.9 pg/ml, P = 0.009). LIMITATIONS: Timing of ghrelin measurements, and stimulation of only left vagus nerve. CONCLUSION: tcVNS decreases ghrelin levels in response to various stressful stimuli. These findings are consistent with a growing literature that tcVNS modulates hormonal and autonomic responses to stress.


Assuntos
Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Humanos , Grelina , Estimulação do Nervo Vago/métodos , Nervo Vago/fisiologia , Sistema Nervoso Autônomo , Estimulação Elétrica Nervosa Transcutânea/métodos , Transtornos Psicofisiológicos
2.
IEEE Trans Biomed Eng ; 69(2): 849-859, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34449355

RESUMO

OBJECTIVE: Variations in respiration patterns are a characteristic response to distress due to underlying neurorespiratory couplings. Yet, no work to date has quantified respiration pattern variability (RPV) in the context of traumatic stress and studied its functional neural correlates - this analysis aims to address this gap. METHODS: Fifty human subjects with prior traumatic experiences (24 with posttraumatic stress disorder (PTSD)) completed a ∼3-hr protocol involving personalized traumatic scripts and active/sham (double-blind) transcutaneous cervical vagus nerve stimulation (tcVNS). High-resolution positron emission tomography functional neuroimages, electrocardiogram (ECG), and respiratory effort (RSP) data were collected during the protocol. Supplementing the RSP signal with ECG-derived respiration for quality assessment and timing extraction, RPV metrics were quantified and analyzed. Specifically, correlation analyses were performed using neuroactivity in selected limbic regions, and responses to active and sham tcVNS were compared. RESULTS: The single-lag unscaled autocorrelation of respiration rate correlated negatively with left amygdala activity and positively with right rostromedial prefrontal cortex (rmPFC) activity for non-PTSD; it also correlated negatively with left and right insulae activity and positively with right rmPFC activity for PTSD. The single-lag unscaled autocorrelation of expiration time was greater following active stimulation for non-PTSD. CONCLUSION: Quantifying RPV is of demonstrable importance to assessing trauma-induced changes in neural function and tcVNS effects on respiratory physiology. SIGNIFICANCE: This is the first demonstration of RPV's pertinence to traumatic stress- and tcVNS-induced neurorespiratory responses. The open-source processing pipeline elucidated herein uniquely includes both RSP and ECG-derived respiration signals for quality assessment, timing estimation, and RPV extraction.


Assuntos
Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Encéfalo , Humanos , Imageamento por Ressonância Magnética , Taxa Respiratória , Estimulação Elétrica Nervosa Transcutânea/métodos , Nervo Vago , Estimulação do Nervo Vago/métodos
3.
Brain Stimul ; 13(1): 47-59, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31439323

RESUMO

BACKGROUND: Stress is associated with activation of the sympathetic nervous system, and can lead to lasting alterations in autonomic function and in extreme cases symptoms of posttraumatic stress disorder (PTSD). Vagal nerve stimulation (VNS) is a potentially useful tool as a modulator of autonomic nervous system function, however currently available implantable devices are limited by cost and inconvenience. OBJECTIVE: The purpose of this study was to assess the effects of transcutaneous cervical VNS (tcVNS) on autonomic responses to stress. METHODS: Using a double-blind approach, we investigated the effects of active or sham tcVNS on peripheral cardiovascular and autonomic responses to stress using wearable sensing devices in 24 healthy human participants with a history of exposure to psychological trauma. Participants were exposed to acute stressors over a three-day period, including personalized scripts of traumatic events, public speech, and mental arithmetic tasks. RESULTS: tcVNS relative to sham applied immediately after traumatic stress resulted in a decrease in sympathetic function and modulated parasympathetic/sympathetic autonomic tone as measured by increased pre-ejection period (PEP) of the heart (a marker of cardiac sympathetic function) of 4.2 ms (95% CI 1.6-6.8 ms, p < 0.01), decreased peripheral sympathetic function as measured by increased photoplethysmogram (PPG) amplitude (decreased vasoconstriction) by 47.9% (1.4-94.5%, p < 0.05), a 9% decrease in respiratory rate (-14.3 to -3.7%, p < 0.01). Similar effects were seen when tcVNS was applied after other stressors and in the absence of a stressor. CONCLUSION: Wearable sensing modalities are feasible to use in experiments in human participants, and tcVNS modulates cardiovascular and peripheral autonomic responses to stress.


Assuntos
Frequência Cardíaca/fisiologia , Taxa Respiratória/fisiologia , Estresse Psicológico/terapia , Estimulação Elétrica Nervosa Transcutânea/métodos , Estimulação do Nervo Vago/métodos , Nervo Vago/fisiologia , Adolescente , Adulto , Idoso , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA