Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 100(4)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38373802

RESUMO

Liver abscesses (LA) resulting from bacterial infection in cattle pose a significant global challenge to the beef and dairy industries. Economic losses from liver discounts at slaughter and reduced animal performance drive the need for effective mitigation strategies. Tylosin phosphate supplementation is widely used to reduce LA occurrence, but concerns over antimicrobial overuse emphasize the urgency to explore alternative approaches. Understanding the microbial ecology of LA is crucial to this, and we hypothesized that a reduced timeframe of tylosin delivery would alter LA microbiomes. We conducted 16S rRNA sequencing to assess severe liver abscess bacteriomes in beef cattle supplemented with in-feed tylosin. Our findings revealed that shortening tylosin supplementation did not notably alter microbial communities. Additionally, our findings highlighted the significance of sample processing methods, showing differing communities in bulk purulent material and the capsule-adhered material. Fusobacterium or Bacteroides ASVs dominated LA, alongside probable opportunistic gut pathogens and other microbes. Moreover, we suggest that liver abscess size correlates with microbial community composition. These insights contribute to our understanding of factors impacting liver abscess microbial ecology and will be valuable in identifying antibiotic alternatives. They underscore the importance of exploring varied approaches to address LA while reducing reliance on in-feed antibiotics.


Assuntos
Abscesso Hepático , Microbiota , Bovinos , Animais , Tilosina/farmacologia , RNA Ribossômico 16S/genética , Abscesso Hepático/veterinária , Abscesso Hepático/epidemiologia , Abscesso Hepático/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Suplementos Nutricionais/análise , Ração Animal/análise
2.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617172

RESUMO

Supplementation of ruminant diets with the methane (CH4) inhibitor 3-nitrooxypropanol (3-NOP; DSM Nutritional Products, Switzerland) is a promising greenhouse gas mitigation strategy. However, most studies have used high grain or mixed forage-concentrate diets. The objective of this study was to evaluate the effects of supplementing a high-forage diet (90% forage DM basis) with 3-NOP on dry matter (DM) intake, rumen fermentation and microbial community, salivary secretion, enteric gas emissions, and apparent total-tract nutrient digestibility. Eight ruminally cannulated beef heifers (average initial body weight (BW) ±â€…SD, 515 ±â€…40.5 kg) were randomly allocated to two treatments in a crossover design with 49-d periods. Dietary treatments were: 1) control (no 3-NOP supplementation); and 2) 3-NOP (control + 150 mg 3-NOP/kg DM). After a 16-d diet adaption, DM intake was recorded daily. Rumen contents were collected on days 17 and 28 for volatile fatty acid (VFA) analysis, whereas ruminal pH was continuously monitored from days 20 to 28. Eating and resting saliva production were measured on days 20 and 31, respectively. Diet digestibility was measured on days 38-42 by the total collection of feces, while enteric gas emissions were measured in chambers on days 46-49. Data were analyzed using the mixed procedure of SAS. Dry matter intake and apparent total-tract digestibility of nutrients (DM, neutral and acid detergent fiber, starch, and crude protein) were similar between treatments (P ≥ 0.15). No effect was observed on eating and resting saliva production. Relative abundance of the predominant bacterial taxa and rumen methanogen community was not affected by 3-NOP supplementation but rather by rumen digesta phase and sampling hour (P ≤ 0.01). Total VFA concentration was lower (P = 0.004) following 3-NOP supplementation. Furthermore, the reduction in acetate and increase in propionate molar proportions for 3-NOP lowered (P < 0.001) the acetate to propionate ratio by 18.9% as compared with control (4.1). Mean pH was 0.21 units lower (P < 0.001) for control than 3-NOP (6.43). Furthermore, CH4 emission (g/d) and yield (g/kg DMI) were 22.4 and 22.0% smaller (P < 0.001), respectively, for 3-NOP relative to control. Overall, the results indicate that enteric CH4 emissions were decreased by more than 20% with 3-NOP supplementation of a forage diet without affecting DM intake, predominant rumen microbial community, and apparent total-tract nutrients digestibility.


This study evaluated the effects of supplementing forage fed cattle with 3-nitrooxypropanol (150 mg/kg dry matter) on feed intake, rumen fermentation and microbial community composition, methane emissions, and nutrient digestibility. Eight ruminally cannulated beef heifers were used for the experiment. The results indicated that 3-nitrooxypropanol supplementation substantially reduced methane emissions without affecting feed intake and total-tract digestibility of nutrients.


Assuntos
Metano , Propionatos , Bovinos , Animais , Feminino , Metano/metabolismo , Propionatos/metabolismo , Ração Animal/análise , Dieta/veterinária , Ingestão de Alimentos , Ácidos Graxos Voláteis/metabolismo , Suplementos Nutricionais/análise , Rúmen/metabolismo , Fermentação , Digestão , Lactação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA