Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brain Dev ; 36(7): 593-600, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24055166

RESUMO

BACKGROUND: Lesch-Nyhan disease (LND) is a rare X-linked recessive neurogenetic disorder caused by deficiency of the purine salvage enzyme hypoxanthine phosphoribosyltransferase (HPRT, EC 2.4.2.8) which is responsible for recycling purine bases into purine nucleotides. Affected individuals have hyperuricemia leading to gout and urolithiasis, accompanied by a characteristic severe neurobehavioural phenotype with compulsive self-mutilation, extrapyramidal motor disturbances and cognitive impairment. AIM: For its theoretical therapeutic potential to replenish the brain purine nucleotide pool, oral supplementation with S-adenosylmethionine (SAMe) was trialed in 5 Malaysian children with LND, comprising 4 related Malay children from 2 families, including an LND girl, and a Chinese Malaysian boy. RESULTS: Dramatic reductions of self-injury and aggressive behaviour, as well as a milder reduction of dystonia, were observed in all 5 patients. Other LND neurological symptoms did not improve during SAMe therapy. DISCUSSION: Molecular mechanisms proposed for LND neuropathology include GTP depletion in the brain leading to impaired dopamine synthesis, dysfunction of G-protein-mediated signal transduction, and defective developmental programming of dopamine neurons. The improvement of our LND patients on SAMe, particularly the hallmark self-injurious behaviour, echoed clinical progress reported with another purine nucleotide depletion disorder, Arts Syndrome, but contrasted lack of benefit with the purine disorder adenylosuccinate lyase deficiency. This first report of a trial of SAMe therapy in LND children showed remarkably encouraging results that warrant larger studies.


Assuntos
Síndrome de Lesch-Nyhan/tratamento farmacológico , S-Adenosilmetionina/uso terapêutico , Adolescente , Agressão/efeitos dos fármacos , Criança , Pré-Escolar , Distonia/tratamento farmacológico , Feminino , Humanos , Lactente , Malásia , Masculino , Linhagem , Purinas/metabolismo , Comportamento Autodestrutivo/tratamento farmacológico
2.
Mutat Res ; 615(1-2): 12-7, 2007 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-17207504

RESUMO

Folic acid deficiency (FA-) augments DNA damage caused by alkylating agents. The role of DNA repair in modulating this damage was investigated in mice. Weanling wild-type or 3-methyladenine glycosylase (Aag) null mice were maintained on a FA- diet or the same diet supplemented with folic acid (FA+) for 4 weeks. They were then treated with methyl methanesulfonate (MMS), 100mg/kg i.p. Six weeks later, spleen cells were collected for assays of non-selected and 6-thioguanine (TG) selected cloning efficiency to measure the mutant frequency at the Hprt locus. In wild-type mice, there was no significant effect of either MMS treatment or folate dietary content on splenocyte non-selected cloning efficiency. In contrast, non-selected cloning efficiency was significantly higher in MMS-treated Aag null mice than in saline treated controls (diet-gene interaction variable, p=0.04). The non-selected cloning efficiency was significantly higher in the FA+ diet than in the FA- diet group after MMS treatment of Aag null mice. Mutant frequency after MMS treatment was significantly higher in FA- wild-type and Aag null mice and in FA+ Aag null mice, but not in FA+ wild-type mice. For the Aag null mice, mutant frequency was higher in the FA+ mice than in the FA- mice after either saline or MMS treatment. These studies indicate that in wild-type mice treated with MMS, dietary folate content (FA+ or FA-) had no effect on cytotoxicity, but FA- diet increased DNA mutation frequency compared to FA+ diet. In Aag null mice, FA- diet increased the cytotoxic effects of alkylating agents but decreased the risk of DNA mutation.


Assuntos
DNA Glicosilases/deficiência , Deficiência de Ácido Fólico/genética , Deficiência de Ácido Fólico/metabolismo , Metanossulfonato de Metila/toxicidade , Mutagênicos/toxicidade , Animais , Antineoplásicos Alquilantes/toxicidade , Ensaio de Unidades Formadoras de Colônias , DNA Glicosilases/genética , Deficiência de Ácido Fólico/patologia , Hipoxantina Fosforribosiltransferase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Baço/efeitos dos fármacos , Baço/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA