RESUMO
Previously, a Saccharomyces cerevisiae fermentation product (SCFP) positively altered fecal microbiota, fecal metabolites, and immune cell function of adult dogs. Our objective was to determine the fecal characteristics, microbiota, and metabolites of SCFP-supplemented dogs subjected to transport stress. All procedures were approved by the Four Rivers Kennel IACUC prior to experimentation. Thirty-six adult dogs (18 male, 18 female; age: 7.1 ± 0.77 yr; body weight: 28.97 ± 3.67 kg) were randomly assigned to be controls or receive SCFP supplementation (250 mg/dog/d) (N = 18/group) for 11 wk. At that time, fresh fecal samples were collected before and after transport in a hunting dog trailer with individual kennels. The trailer was driven 40 miles round trip for about 45 min. Fecal microbiota data were evaluated using Quantitative Insights Into Microbial Ecology 2, while all other data were analyzed using the Mixed Models procedure of Statistical Analysis System. Effects of treatment, transport, and treatment × transport were tested, with P < 0.05 being considered significant. Transport stress increased fecal indole concentrations and relative abundances of fecal Actinobacteria, Collinsella, Slackia, Ruminococcus, and Eubacterium. In contrast, relative abundances of fecal Fusobacteria, Streptococcus, and Fusobacterium were reduced by transport. Fecal characteristics, metabolites, and bacterial alpha and beta diversity measures were not affected by diet alone. Several diet × transport interactions were significant, however. Following transport, relative abundance of fecal Turicibacter increased in SCFP-supplemented dogs, but decreased in controls. Following transport, relative abundances of fecal Proteobacteria, Bacteroidetes, Prevotella, and Sutterella increased in controls, but not in SCFP-supplemented dogs. In contrast, relative abundances of fecal Firmicutes, Clostridium, Faecalibacterium, and Allobaculum increased and fecal Parabacteroides and Phascolarctobacterium decreased after transport stress in SCFP-supplemented dogs, but not in controls. Our data demonstrate that both transport stress and SCFP alter fecal microbiota in dogs, with transport being the primary cause for shifts. SCFP supplementation may provide benefits to dogs undergoing transport stress, but more research is necessary to determine proper dosages. More research is also necessary to determine if and how transport stress impacts gastrointestinal microbiota and other indicators of health.
The objective of this study was to determine the fecal characteristics, microbiota, and metabolites of dogs supplemented with a Saccharomyces cerevisiae fermentation product (SCFP) and subjected to transport stress. Thirty-six adult dogs were randomly assigned to a control diet or an SCFP-supplemented diet (N = 18 per group) and fed for 11 wk. At that time, a transport stress challenge was conducted. Fresh fecal samples were collected for measurement of general characteristics, microbiota, and metabolites before and after transport stress. Transport stress increased fecal indoles and Actinobacteria, Collinsella, Slackia, Ruminococcus, and Eubacterium populations and decreased fecal Fusobacteria, Streptococcus, and Fusobacterium populations. Fecal characteristics, metabolites, and bacterial alpha and beta diversity measures were not affected by diet alone, but several diet × transport interactions were significant. Following transport, fecal Turicibacter increased in SCFP-supplemented dogs, but decreased in controls. Following transport, fecal Proteobacteria, Bacteroidetes, Prevotella, and Sutterella increased in controls, but not in SCFP-supplemented dogs. Fecal Firmicutes, Clostridium, Faecalibacterium, and Allobaculum increased and fecal Parabacteroides and Phascolarctobacterium decreased after transport stress in SCFP-supplemented dogs, but not in controls. Our data demonstrate that both transport stress and SCFP alter fecal microbiota in dogs. SCFP supplementation may provide benefits to dogs undergoing stress, but proper dosages need to be determined.
Assuntos
Microbiota , Saccharomyces cerevisiae , Cães , Feminino , Masculino , Animais , Saccharomyces cerevisiae/metabolismo , Fermentação , Dieta/veterinária , Suplementos Nutricionais/análise , Fezes/microbiologia , Bactérias , Ração Animal/análiseRESUMO
Given the dynamic market for protein-based ingredients in the pet food industry, demand continues to increase for both plant- and animal-based options. Protein sources contain different amino acid (AA) profiles and vary in digestibility, affecting protein quality. The objective of this study was to evaluate the apparent total tract digestibility (ATTD) of canine diets differing in protein source and test their effects on serum metabolites and fecal characteristics, metabolites, and microbiota of healthy adult dogs consuming them. Four extruded diets were formulated to be isonitrogenous and meet the nutrient needs for adult dogs at maintenance, with the primary difference being protein source: 1) fresh deboned, dried, and spray-dried chicken (DC), 2) chicken by-product meal (CBPM), 3) wheat gluten meal (WGM), and 4) corn gluten meal (CGM). Twelve adult spayed female beagles (body weight [BW] = 9.9 ± 1.0 kg; age = 6.3 ± 1.1 yr) were used in a replicated 4 × 4 Latin square design (n = 12/treatment). Each period consisted of a 22-d adaptation phase, 5 d for fecal collection, and 1 d for blood collection. Fecal microbiota data were analyzed using QIIME 2.2020.8. All other data were analyzed using the Mixed Models procedure of SAS version 9.4. Fecal scores were higher (P < 0.05; looser stools) in dogs fed DC or CBPM than those fed WGM or CGM, but all remained within an appropriate range. Dry matter ATTD was lower (P < 0.05) in dogs fed CBPM or CGM than those fed DC or WGM. Crude protein ATTD was lower (P < 0.05) in dogs fed DC or CGM than those fed WGM. Dogs fed CBPM had lower (P < 0.05) organic matter, crude protein, and energy ATTD than those fed the other diets. Fecal indole was higher (P < 0.05) in dogs fed CBPM than those fed WGM. Fecal short-chain fatty acids were higher (P < 0.05) in dogs fed DC than those fed CGM. Fecal branched-chain fatty acids were higher (P < 0.05) in dogs fed DC or CBPM than those fed WGM. Fecal ammonia was higher (P < 0.05) in dogs fed DC or CBPM than those fed WGM or CGM. The relative abundances of three bacterial phyla and nine bacterial genera were shifted among treatment groups (P < 0.05). Considering AA profiles and digestibility data, the DC diet protein sources provided the highest quality protein without additional AA supplementation, but the animal-based protein diets resulted in higher fecal proteolytic metabolites. Further studies evaluating moderate dietary protein concentrations are needed to better compare plant- and animal-based protein sources.
Pet food trends are constantly changing. Because consumers are often focused on dietary proteins, with ingredient sources, dietary inclusion levels, and processing methods being important, they are a popular research topic. Protein sources contain different amino acid (AA) profiles and vary in digestibility, affecting protein quality. Our objective was to evaluate the apparent total tract digestibility of canine diets differing in protein source and test their effects on serum metabolites and fecal characteristics, metabolites, and microbiota of healthy adult dogs. Test diets were formulated to be similar nutritionally, but differed in protein source: fresh deboned, dried, and spray-dried chicken (DC), chicken by-product meal (CBPM), wheat gluten meal (WGM), and corn gluten meal (CGM). Fecal scores were higher in dogs fed chicken-based diets, but remained within an appropriate range. Dogs fed CBPM had lower nutrient and energy digestibilities than those fed the other diets, with protein digestibility also being lower in dogs fed DC or CGM than those fed WGM. Fecal metabolites and microbiota were shifted among diets, with animal-based protein diets increasing fecal protein metabolites. All diets were complete and balanced and performed well. When considering AA profiles and digestibility, however, the DC diet provided the highest protein quality.
Assuntos
Dieta Rica em Proteínas , Digestão , Cães , Animais , Fezes/química , Dieta/veterinária , Dieta Rica em Proteínas/veterinária , Aminoácidos/metabolismo , Glutens/análise , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição AnimalRESUMO
In recent dog and cat experiments, a novel milk oligosaccharide biosimilar (GNU100) positively modulated fecal microbiota and metabolite profiles, suggesting benefits to gastrointestinal health. The objective of this study was to investigate the effects of GNU100 on the fecal characteristics, microbiota, and bile acid (BA) concentrations of healthy adult dogs treated with antibiotics. Twelve healthy adult female dogs (mean age: 3.74 ± 2.4 yr) were used in an 8-wk crossover design study (dogs underwent both treatments). All dogs were fed a control diet during a 2-wk baseline, then randomly allotted to 1 of 2 treatments (diet only or diet + 1% GNU100) for another 6 wk. From weeks 2 to 4, dogs were orally administered metronidazole (20 mg/kg BW) twice daily. Fecal scores were recorded daily and fresh fecal samples were collected at weeks 2, 4, 5, 6, and 8 for measurement of pH, dry matter, microbiota populations, and BA, immunoglobulin A, and calprotectin concentrations. On weeks 0, 4, and 8, blood samples were collected for serum chemistry and hematology analysis. All data were analyzed as repeated measures using the Mixed Models procedure of SAS version 9.4, with significance considered P < 0.05. Metronidazole increased (P < 0.0001) fecal scores (looser stools) and modified (P < 0.05) fecal microbiota and BA profiles. Using qPCR, metronidazole reduced fecal Blautia, Fusobacterium, Turicibacter, Clostridium hiranonis, and Faecalibacterium abundances, and increased fecal Streptococcus and Escherichia coli abundances. DNA sequencing analysis demonstrated that metronidazole reduced microbial alpha diversity and influenced the relative abundance of 20 bacterial genera and families. Metronidazole also increased primary BA and reduced secondary BA concentrations. Most antibiotic-induced changes returned to baseline by week 8. Fecal scores were more stable (P = 0.01) in GNU100-fed dogs than controls after antibiotic administration. GNU100 also influenced fecal microbiota and BA profiles, reducing (P < 0.05) the influence of metronidazole on microbial alpha diversity and returning some fecal microbiota and secondary BA to baseline levels at a quicker (P < 0.05) rate than controls. In conclusion, our results suggest that GNU100 supplementation provides benefits to dogs treated with antibiotics, providing more stable fecal scores, maintaining microbial diversity, and allowing for quicker recovery of microbiota and secondary BA profiles which play an essential role in gut health.
Our objective was to test the effects of a novel milk oligosaccharide biosimilar (GNU100) on the fecal characteristics, microbiota, and bile acid (BA) concentrations of healthy adult dogs treated with antibiotics. Dogs were fed a control diet during a 2-wk baseline, then randomly allotted to 1 of 2 treatments (diet only or diet + 1% GNU100) for another 6 wk. From weeks 2 to 4, dogs were given an oral antibiotic. Fecal scores were recorded and fresh fecal samples were collected over time to assess fecal characteristics, microbiota populations, and BA concentrations. The antibiotic was shown to increase fecal scores (looser stools) and modify fecal microbiota populations (altered diversity and ~20 bacterial genera and families) and BA profiles (increased primary and reduced secondary BA). Most antibiotic-induced changes returned to baseline by week 8. In dogs fed GNU100, fecal scores were more stable and changes to microbial diversity were lower than controls after antibiotic administration. Fecal microbiota and secondary BA of GNU100-fed dogs also returned to baseline levels at a quicker rate than controls. These results suggest that GNU100 provides benefits to dogs given antibiotics, providing more stable fecal scores, maintaining microbial diversity, and allowing for quicker recovery of microbiota and BA profiles.
Assuntos
Medicamentos Biossimilares , Doenças do Gato , Doenças do Cão , Microbioma Gastrointestinal , Microbiota , Cães , Feminino , Animais , Gatos , Metronidazol/farmacologia , Metronidazol/análise , Medicamentos Biossimilares/farmacologia , Ácidos e Sais Biliares , Leite/química , Complexo Antígeno L1 Leucocitário/análise , Complexo Antígeno L1 Leucocitário/farmacologia , Fezes/química , Antibacterianos/farmacologia , Imunoglobulinas , Oligossacarídeos/farmacologia , Oligossacarídeos/análise , Ração Animal/análiseRESUMO
BACKGROUND: Diet has a large influence on gut microbiota diversity and function. Although previous studies have investigated the effect of dietary interventions on the gut microbiome, longitudinal changes in the gut microbiome, microbial functions, and metabolite profiles post dietary interventions have been underexplored. How long these outcomes require to reach a steady-state, how they relate to one another, and their impact on host physiological changes are largely unknown. To address these unknowns, we collected longitudinal fecal samples following an abrupt dietary change in healthy adult beagles (n = 12, age: 5.16 ± 0.87 year, BW: 13.37 ± 0.68 kg) using a crossover design. All dogs were fed a kibble diet (control) from d1-14, and then fed that same diet supplemented with fiber (HFD) or a protein-rich canned diet (CD) from d15-27. Fresh fecal samples were collected on d13, 16, 20, 24, and 27 for metabolite and microbiome assessment. Fecal microbial diversity and composition, metabolite profiles, and microbial functions dramatically diverged and stabilized within a few days (2 d for metabolites; 6 d for microbiota) after dietary interventions. Fecal acetate, propionate, and total short-chain fatty acids increased after change to HFD, while fecal isobutyrate, isovalerate, total branched-chain fatty acids, phenol, and indole increased after dogs consumed CD. Relative abundance of ~ 100 bacterial species mainly belonging to the Firmicutes, Proteobacteria, and Actinobacteria phyla increased in HFD. These shifts in gut microbiome diversity and composition were accompanied by functional changes. Transition to HFD led to increases in the relative abundance of KEGG orthology (KO) terms related to starch and sucrose metabolism, fatty acid biosynthesis, and amino sugar and nucleotide sugar metabolism, while transition to CD resulted in increased relative abundance of KO terms pertaining to inositol phosphate metabolism and sulfur metabolism. Significant associations among fecal microbial taxa, KO terms, and metabolites were observed, allowing for high-accuracy prediction of diet group by random forest analysis. CONCLUSIONS: Longitudinal sampling and a multi-modal approach to characterizing the gastrointestinal environment allowed us to demonstrate how drastically and quickly dietary changes impact the fecal microbiome and metabolite profiles of dogs following an abrupt dietary change and identify key microbe-metabolite relationships that allowed for treatment prediction.
RESUMO
O estudo objetivou avaliar a adesão e a percepção dos proprietários de cães, residentes na cidade de São Paulo/SP, quanto ao emprego de dieta caseira no manejo nutricional de seu animal de estimação. Foram entrevistados por contato telefônico 55 proprietários que forneciam dieta caseira no manejo nutricional do seu cão. O questionário contemplou perguntas relacionadas ao preparo e eficiência das dietas, bem como o manejo dos animais. Verificou-se que considerável número (parcela) de prescrições (45,9%) esteve associado a pacientes com hiporexia. Dentre os proprietários que relataram dificuldade no preparo (10,9%), o tempo dispendido (33,3%) foi a maior problemática. Quando questionados em relação às modificações nas fórmulas prescritas, 60% admitiram que a realizaram sem prévia recomendação. Na opinião dos entrevistados, a dieta caseira não causou alterações nas fezes (50%) e na pelagem (62,7%) dos animais em comparação ao emprego de um alimento comercial e foi considerada adequada pela maioria (79,0%). As dietas caseiras podem ser amplamente utilizadas, mostrando-se especialmente importantes em cães doentes e/ou hiporéticos por apresentarem maior aceite em relação à dieta comercial, no entanto, nem todos os tutores estão aptos a utilizá-la.(AU)
The aim of this study was to evaluate the adhesion and perception of dog owners from the city of São Paulo, Brazil, on the employment of homemade diet for the nutritional management of their pet. The participants were 55 owners that provided homemade diet for their dog. The interviews were conducted by telephone and the questionnaire included points related with the preparation and effectiveness of diets, as well as the handling of animals. It was found that a considerable number of prescriptions (45.9%) was associated with patients with hyporexia. Among the owners who reported difficulty in the preparation (10.9%), time spent (33.3%) was the most problematic topic. When questioned in relation to changes in the prescribed formulas, 60% admitted that conducted it without recommendation. In the opinion of interviewed owners, the homemade diet did not cause changes in feces (50%) and coat (62.7%) of the animals compared to the use of a commercial food and was considered appropriate by the majority (79.0%). The homemade diets can be widely used, being especially important in dogs with diseases and/or dogs with hyporexia, since they are more easily accepted than the commercial diet; however, not all owners are able for its right use.(AU)