Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Food ; 4(9): 762-773, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550541

RESUMO

The spatio-temporal distribution, flow and end use of phosphorus (P) embedded in traded agricultural products are poorly understood. Here we use global trade matrices to analyse the partial factor productivity of P (output per unit of P input) for crop and livestock products in 200 countries and their cumulative contributions to the export or import of agricultural products over 1961-2019. In these six decades, the trade of agricultural P products has increased global partial factor productivity for crop and livestock production and has theoretically saved 67 Tg P in fertilizers and 1.6 Tg P in feed. However, trade is now at risk of contributing to wasteful use of P resources globally due to a decline in trade optimality, as agricultural products are increasingly exported from low to high partial factor productivity countries and due to P embedded in imported agricultural products mainly lost to the environment without recycling. Integrated crop-livestock production systems and P-recycling technologies can help.


Assuntos
Agricultura , Fósforo , Produção Agrícola
2.
New Phytol ; 233(1): 169-181, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614196

RESUMO

Consistent information on the current elemental composition of vegetation at global scale and the variables that determine it is lacking. To fill this gap, we gathered a total of 30 912 georeferenced records on woody plants foliar concentrations of nitrogen (N), phosphorus (P) and potassium (K) from published databases, and produced global maps of foliar N, P and K concentrations for woody plants using neural networks at a resolution of 1 km2 . We used data for climate, atmospheric deposition, soil and morphoclimatic groups to train the neural networks. Foliar N, P and K do not follow clear global latitudinal patterns but are consistent with the hypothesis of soil substrate age. We additionally built generalized linear mixed models to investigate the evolutionary history effect together with the effects of environmental effects. In this comparison, evolutionary history effects explained most of the variability in all cases (mostly > 60%). These results emphasize the determinant role of evolutionary history in foliar elemental composition, which should be incorporated in upcoming dynamic global vegetation models.


Assuntos
Ecossistema , Folhas de Planta , Florestas , Nitrogênio/análise , Fósforo , Folhas de Planta/química , Solo
3.
Glob Chang Biol ; 27(22): 5989-6003, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34383341

RESUMO

Soil phosphatase enzymes are produced by plant roots and microorganisms and play a key role in the cycling of phosphorus (P), an often-limiting element in terrestrial ecosystems. The production of these enzymes in soil is the most important biological strategy for acquiring phosphate ions from organic molecules. Previous works showed how soil potential phosphatase activity is mainly driven by climatic conditions and soil nitrogen (N) and carbon. Nonetheless, future trends of the activity of these enzymes under global change remain little known. We investigated the influence of some of the main drivers of change on soil phosphatase activity using a meta-analysis of results from 97 published studies. Our database included a compilation of N and P fertilization experiments, manipulation experiments with increased atmospheric CO2 concentration, warming, and drought, and studies comparing invaded and non-invaded ecosystems. Our results indicate that N fertilization leads to higher phosphatase activity, whereas P fertilization has the opposite effect. The rise of atmospheric CO2 levels or the arrival of invasive species also exhibits positive response ratios on the activity of soil phosphatases. However, the occurrence of recurrent drought episodes decreases the activity of soil phosphatases. Our analysis did not reveal statistically significant effects of warming on soil phosphatase activity. In general, soil enzymatic changes in the reviewed experiments depended on the initial nutrient and water status of the ecosystems. The observed patterns evidence that future soil phosphatase activity will not only depend on present-day soil conditions but also on potential compensations or amplifications among the different drivers of global change. The responses of soil phosphatases to the global change drivers reported in this study and the consideration of cost-benefit approaches based on the connection of the P and N cycle will be useful for a better estimation of phosphatase production in carbon (C)-N-P models.


Assuntos
Ecossistema , Solo , Nitrogênio , Monoéster Fosfórico Hidrolases , Fósforo
4.
Artigo em Inglês | MEDLINE | ID: mdl-33022999

RESUMO

BACKGROUND: The quantity, quality, and type (e.g., animal and vegetable) of human food have been correlated with human health, although with some contradictory or neutral results. We aimed to shed light on this association by using the integrated data at country level. METHODS: We correlated elemental (nitrogen (N) and phosphorus (P)) compositions and stoichiometries (N:P ratios), molecular (proteins) and energetic traits (kilocalories) of food of animal (terrestrial or aquatic) and vegetable origin, and alcoholic beverages with cancer prevalence and mortality and life expectancy (LE) at birth at the country level. We used the official databases of United Nations (UN), Food and Agriculture Organization of the United Nations (FAO), Organization for Economic Co-operation and Development (OECD), World Bank, World Health Organization (WHO), U.S. Department of Agriculture, U.S. Department of Health, and Eurobarometer, while also considering other possibly involved variables such as income, mean age, or human development index of each country. RESULTS: The per capita intakes of N, P, protein, and total intake from terrestrial animals, and especially alcohol were significantly and positively associated with prevalence and mortality from total, colon, lung, breast, and prostate cancers. In contrast, high per capita intakes of vegetable N, P, N:P, protein, and total plant intake exhibited negative relationships with cancer prevalence and mortality. However, a high LE at birth, especially in underdeveloped countries was more strongly correlated with a higher intake of food, independent of its animal or vegetable origin, than with other variables, such as higher income or the human development index. CONCLUSIONS: Our analyses, thus, yielded four generally consistent conclusions. First, the excessive intake of terrestrial animal food, especially the levels of protein, N, and P, is associated with higher prevalence of cancer, whereas equivalent intake from vegetables is associated with lower prevalence. Second, no consistent relationship was found for food N:P ratio and cancer prevalence. Third, the consumption of alcoholic beverages correlates with prevalence and mortality by malignant neoplasms. Fourth, in underdeveloped countries, reducing famine has a greater positive impact on health and LE than a healthier diet.


Assuntos
Expectativa de Vida , Neoplasias , Verduras , Bebidas Alcoólicas , Animais , Dieta , Humanos , Masculino , Neoplasias/epidemiologia , Nitrogênio/análise , Fósforo/análise
5.
Commun Biol ; 3(1): 125, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170162

RESUMO

The drivers of global change, including increases in atmospheric CO2 concentrations, N and S deposition, and climate change, likely affect the nutritional status of forests. Here we show forest foliar concentrations of N, P, K, S and Mg decreased significantly in Europe by 5%, 11%, 8%, 6% and 7%, respectively during the last three decades. The decrease in nutritional status was especially large in Mediterranean and temperate forests. Increasing atmospheric CO2 concentration was well correlated with the decreases in N, P, K, Mg, S concentrations and the increase of N:P ratio. Regional analyses indicated that increases in some foliar nutrient concentrations such as N, S and Ca in northern Europe occurred associated with increasingly favourable conditions of mean annual precipitation and temperature. Crucial changes in forest health, structure, functioning and services, including negative feedbacks on C capture can be expected if these trends are not reversed.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Florestas , Magnésio/análise , Nitrogênio/análise , Fósforo/análise , Potássio/análise , Enxofre/análise , Árvores/química , Mudança Climática , Secas , Europa (Continente) , Folhas de Planta/química , Solo/química , Temperatura
6.
Sci Rep ; 7(1): 17671, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247185

RESUMO

We analyzed mean height of men born in the 1960s, 1970s and 1980s in 80 countries. Both height and the change in height during the last decades were correlated with N and P intake, as well as the N:P intake ratio. Rich countries had higher per capita N and P intake than poor countries (on average 19.5 ± 0.3 versus 9.66 ± 0.18 kg N y-1 and 2.17 ± 0.04 versus 1.35 ± 0.02 kg P y-1), and also larger increases in per capita N intake (12.1 ± 2.0% vs. 7.0 ± 2.1%) and P intake (7.6 ± 1.0% vs 6.01 ± 0.7%), during the period 1961-2009. The increasing gap in height trends between rich and poor countries is associated with an increasing gap in nutrition, so a more varied diet with higher N, P, and N:P intake is a key factor to improve food intake quality in poor countries and thus shorten the gap with rich countries. More N and P are needed with the consequent requirements for a better management of the socioeconomic and environmental associated problems.


Assuntos
Estatura/fisiologia , Ingestão de Energia/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Estado Nutricional , Fatores Socioeconômicos
7.
Glob Chang Biol ; 23(3): 1282-1291, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27272953

RESUMO

Plant invasion is an emerging driver of global change worldwide. We aimed to disentangle its impacts on plant-soil nutrient concentrations. We conducted a meta-analysis of 215 peer-reviewed articles and 1233 observations. Invasive plant species had globally higher N and P concentrations in photosynthetic tissues but not in foliar litter, in comparison with their native competitors. Invasive plants were also associated with higher soil C and N stocks and N, P, and K availabilities. The differences in N and P concentrations in photosynthetic tissues and in soil total C and N, soil N, P, and K availabilities between invasive and native species decreased when the environment was richer in nutrient resources. The results thus suggested higher nutrient resorption efficiencies in invasive than in native species in nutrient-poor environments. There were differences in soil total N concentrations but not in total P concentrations, indicating that the differences associated to invasive plants were related with biological processes, not with geochemical processes. The results suggest that invasiveness is not only a driver of changes in ecosystem species composition but that it is also associated with significant changes in plant-soil elemental composition and stoichiometry.


Assuntos
Espécies Introduzidas , Nitrogênio , Fósforo , Plantas , Ecossistema , Folhas de Planta , Solo
8.
Glob Chang Biol ; 20(4): 1278-88, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24470387

RESUMO

The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N : P applications under low, medium, and high input scenarios, for past (1975), current, and future N : P mass ratios of respectively, 1 : 0.29, 1 : 0.15, and 1 : 0.05. At low N inputs (10 kg ha(-1)), current yield deficits amount to 10% but will increase up to 27% under the assumed future N : P ratio, while at medium N inputs (50 kg N ha(-1)), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N : P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1 : 0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Nitrogênio , Fósforo , Solo/química , África , Fertilizantes , Modelos Teóricos , Nitrogênio/análise , Nitrogênio/farmacologia , Fósforo/análise , Fósforo/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
9.
Nat Commun ; 4: 2934, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24343268

RESUMO

The availability of carbon from rising atmospheric carbon dioxide levels and of nitrogen from various human-induced inputs to ecosystems is continuously increasing; however, these increases are not paralleled by a similar increase in phosphorus inputs. The inexorable change in the stoichiometry of carbon and nitrogen relative to phosphorus has no equivalent in Earth's history. Here we report the profound and yet uncertain consequences of the human imprint on the phosphorus cycle and nitrogen:phosphorus stoichiometry for the structure, functioning and diversity of terrestrial and aquatic organisms and ecosystems. A mass balance approach is used to show that limited phosphorus and nitrogen availability are likely to jointly reduce future carbon storage by natural ecosystems during this century. Further, if phosphorus fertilizers cannot be made increasingly accessible, the crop yields projections of the Millennium Ecosystem Assessment imply an increase of the nutrient deficit in developing regions.


Assuntos
Ecossistema , Nitrogênio , Fósforo , Carbono , Eutrofização , Humanos
10.
PLoS One ; 8(4): e60075, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23565186

RESUMO

The continuing depletion of nutrients from agricultural soils in Sub-Saharan African is accompanied by a lack of substantial progress in crop yield improvement. In this paper we investigate yield gaps for corn under two scenarios: a micro-dosing scenario with marginal increases in nitrogen (N) and phosphorus (P) of 10 kg ha(-1) and a larger yet still conservative scenario with proposed N and P applications of 80 and 20 kg ha(-1) respectively. The yield gaps are calculated from a database of historical FAO crop fertilizer trials at 1358 locations for Sub-Saharan Africa and South America. Our approach allows connecting experimental field scale data with continental policy recommendations. Two critical findings emerged from the analysis. The first is the degree to which P limits increases in corn yields. For example, under a micro-dosing scenario, in Africa, the addition of small amounts of N alone resulted in mean yield increases of 8% while the addition of only P increased mean yields by 26%, with implications for designing better balanced fertilizer distribution schemes. The second finding was the relatively large amount of yield increase possible for a small, yet affordable amount of fertilizer application. Using African and South American fertilizer prices we show that the level of investment needed to achieve these results is considerably less than 1% of Agricultural GDP for both a micro-dosing scenario and for the scenario involving higher yet still conservative fertilizer application rates. In the latter scenario realistic mean yield increases ranged between 28 to 85% in South America and 71 to 190% in Africa (mean plus one standard deviation). External investment in this low technology solution has the potential to kick start development and could complement other interventions such as better crop varieties and improved economic instruments to support farmers.


Assuntos
Produtos Agrícolas , Fertilizantes , Abastecimento de Alimentos , Solo/química , África Subsaariana , Agricultura/economia , Abastecimento de Alimentos/economia , Geografia , Modelos Teóricos , Nitrogênio , Fósforo , Soluções , América do Sul , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA