Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Braz J Microbiol ; 54(2): 897-905, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37155087

RESUMO

In this work, we developed novel colorimetric biosensors consisting of anthocyanin-rich either black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) or red cabbage (Brassica oleracea) extracts for rapid, sensitive, and economic detection of Helicobacter pylori (H. pylori). We comparatively prepared two test solutions as biosensors including anthocyanin-rich black carrot extract (Anth@BCE) and red cabbage extract (Anth@RCE), both of which fixed to pH 2.5 and investigated their colorimetric responses based on electronic structure and electron density of anthocyanins. We successfully used anthocyanin-rich BCE and RCE as natural pH indicators in detection of H. pylori and introduced their advantages like non-toxicity, easy accessibility, and high stability compared to synthetic indicators. The BCE and RCE tests gave the best color change in the presence of 103 CFU/mL (at 60 min) and 104 CFU/mL (at 75 min) H. pylori suspensions prepared in an artificial gastric fluid. The limit of detection was down to 10 CFU/mL for RCE and BCE tests by increasing incubation time (≥ 5 h). We further made an additional study that color differences in the colorimetric responses observed by naked eyes were supported by digital image processing with RGB (Red Green Blue) and Delta-E (ΔE) analysis. It is confirmed that results evaluated by naked eyes and digital image processing are well consistent with each other. These findings proposed that these colorimetric tests can be implemented to pH dependent detection of various microorganisms and can be effectively transferred from laboratory work to clinics in the near future.


Assuntos
Brassica , Daucus carota , Helicobacter pylori , Antocianinas/análise , Antocianinas/química , Daucus carota/química , Colorimetria , Extratos Vegetais/química , Cor
2.
Chem Biodivers ; 20(8): e202300090, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37172105

RESUMO

This work describes a unique and environmentally friendly approach for creating three-dimensional (3D) organic-inorganic flower shaped hybrid nanostructures called "nanoflower (NF)" by using Umbilicaria decussate (U. decussate) extract and copper ions (Cu2+ ). U. decussate species were collected from certain place in Antarctic and Turkey and extraction of each species were completed in methanol and water. The U. decussate extracts were used as organic components and Cu2+ acted as inorganic components for formation of U. decussate extracts based hybrid NFs. We rationally used these NFs as novel nanobiocatalyst and antimicrobial agents. These NFs exhibited peroxidase mimic, dye degradation and antimicrobial properties. The NFs were characterized with various techniques. For instance, the morphologies of the NFs were monitored by scanning electron microscope (SEM), presence of elements in the NFs were presented using Energy Dispersive X-Ray Analysis (EDX). Fourier-transform infrared spectroscopy (FT-IR) was used to elucidate corresponding bending and stretching of bonds in the NFs. The NFs acted as effective Fenton agents in the presence of hydrogen peroxide, and we demonstrated their peroxidase-like activity against guaiacol, dye degradation property towards malachite green and antimicrobial activity for Aeromonas hydrophila, Aeromonas sobria, Escherichia coli, Salmonella enterica and Staphylococcus aureus.


Assuntos
Anti-Infecciosos , Peroxidase , Peroxidase/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Cobre/química , Regiões Antárticas , Turquia , Anti-Infecciosos/farmacologia , Extratos Vegetais/química
3.
Sci Rep ; 13(1): 2056, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739311

RESUMO

The bacterial pathogens have caused various serious infectious diseases in the human body, and even some threats to human life by leading to deaths. Enterobacteriaceae species especially urease positive ones, Proteus mirabilis (P. mirabilis) and Klebsiella pneumoniae (K. pneumoniae), show resistance to antibiotics and cause respiratory and urinary tract infections. We have developed natural indicator-incorporated colorimetric urease tests with a naked eye and smartphone readout to rapidly, sensitively and economically detect P. mirabilis and K. pneumoniae. We utilized anthocyanin found as a predominant component in red cabbage (Brassica oleracea) extract as a natural pH indicator instead of toxic and synthetic indicators. As a mechanistic explanation for the detection of P. mirabilis and K. pneumoniae, urease enzymes secreted from the P. mirabilis and K. pneumoniae hydrolyze urea to produce ammonia (NH3), which increases the pH value of the reaction environment and leads to deprotonation from anthocyanins. The changes in the molecular structure and electronic structure of anthocyanins are responsible for revealing many different colors. We demonstrated how some reaction parameters including the concentration of the bacteria (colony-forming unit, CFU), the concentration of anthocyanin in the tests, initial color and pH values (pHs) of the tests influence their detection performance. We further developed a 3D-printed smartphone platform with smartphone based digital image processing software to improve the detection limit and shorten the detection time. We claim that natural indicator-incorporated rapid urease tests providing colorimetric readout evaluated by the human eye and smartphone imaging processing has great potential in practical use and they can be implemented in clinics.


Assuntos
Bactérias , Brassica , Colorimetria , Urease , Antocianinas , Bactérias/isolamento & purificação , Klebsiella pneumoniae , Proteus mirabilis , Smartphone , Urease/química , Extratos Vegetais/química
4.
J Biotechnol ; 341: 155-162, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34601019

RESUMO

The essential goals of this present study are to elucidate the formation mechanism of ellagic acid rich-blackberry, BBE, (Rubus fruticosus L.) and raspberry, RBE, (Rubus idaeus L.) extracts directed silver nanoparticles and to investigate thier antimicrobial properties towards model dental pathogens E. faecalis and C. albicans compared to BBE, RBE, NaOCl, CHX and EDTA. Both %5 w/w of BBE and RBE reacted with 5 mM Ag + ions at room temperature (25 °C) under mild-stirring, the formation of BBE and RBE directed b@Ag NP and r@Ag NP was monitored over time by using an Uv-vis spectrophotometer. Both b@Ag and r@Ag NPs were also complementarily characterized with SEM and FT-IR. In terms of the antimicrobial studies, b@Ag NP, r@Ag NP, %5 BBE and RBE, 5 mM AgNO3, %5 NaOCl, %1,5 CHX and %15 EDTA were separately incubated with E. faecalis and C. albicans suspensions. The results were evaluated with student t-test using GraphPad Prism 8.0.1 statistical software (P < 0.05). While formation of b@Ag NP was confirmed with characteristic absorbance at ~435 nm in 20 min (min) of incubation, r@Ag NP did not give absorbance till 80 min owing to concentration of ellagic acid acted as a reducing and stabilizng agent for formation of the Ag NPs. Intrestingly, 50 ppm r@Ag NP inactivated ∼89% and ∼99% of E. faecalis and C. albicans cell, respectively, ∼25% and ∼40% cell inactivations for E. faecalis and C. albicans were observed respectively with 50 ppm b@Ag NP. We showed that 50 ppm r@Ag NP has effective antimicrobial property as much as mostly used %5 NaOCl and %1,5 CHX solutions.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Candida albicans , Ácido Elágico/farmacologia , Enterococcus faecalis , Frutas , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Irrigantes do Canal Radicular , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Biochim Biophys Acta Gen Subj ; 1865(2): 129801, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33238195

RESUMO

BACKGROUND: Due to lack of approved drugs and vaccines, the medical world has resorted to older drugs, produced for viral infections and other diseases, as a remedy to combat COVID-19. The accumulating evidence from in vitro and in vivo studies for SARS-CoV and MERS-CoV have demonstrated that several polyphenols found in plants and zinc- polyphenol clusters have been in use as herbal medicines have antiviral activities against viruses with various mechanisms. SCOPE OF REVIEW: Curcumin, zinc and zinc-ionophores have been considered as nutraceuticals and nutrients showing great antiviral activities with their medicinal like activities. MAJOR CONCLUSIONS: In this work, we discussed the potential prophylactic and/or therapeutic effects of curcumin, zinc and zinc-ionophores in treatment of viral infections including COVID-19. GENERAL SIGNIFICANCE: Curcuminoids and Zinc classified as nutraceuticals under GRAS (Generally Recognized As Safe) by FDA can provide complementary treatment for COVID 19 patients with their immunity-boosting and antiviral properties.


Assuntos
COVID-19/terapia , Suplementos Nutricionais , Extratos Vegetais/uso terapêutico , Preparações de Plantas/uso terapêutico , Polifenóis/uso terapêutico , Zinco/química , Antivirais/uso terapêutico , Curcumina/uso terapêutico , Síndrome da Liberação de Citocina , Alimentos , Humanos , Inflamação , Ionóforos/uso terapêutico , Pandemias , Oligoelementos/uso terapêutico , Replicação Viral
6.
Saudi J Biol Sci ; 27(10): 2574-2579, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32994713

RESUMO

For the first time in this study, curcumin was utilized as an organic component reacting with Cu (II) ion (Cu2+) as an inorganic component for fabrication of curcumin based Cu hybrid nanostructure (Cu-hNs). We also systematically examined the catalytic effect towards guaiacol and antimicrobial activities of Cu-hNs towards fish pathogen bacteria. For the characterization of Cu-hNs, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectrometry (FT-IR) analysis were used. We claimed that hydroxyl group might react with Cu2+ in phosphate solution (PO4 -3) to form Cu-hNs. However, more uniform and spherical Cu-hNs were not seen owing to absence of more reactive functional groups like amine and carboxyl groups on structure of curcumin. In addition to our findings, synthesis of Cu-hNs were carried out in the various pH values to evaluate the effect of pHs on formation of Cu-hNs. The Cu-hNs exhibited remarkable catalytic activity throught the Fenton reaction in the presence of hydrogen peroxide (H2O2) and effective antimicrobial activities against Gram-positive/negative fish pathogen bacteria. In this study, cheap and efficient synthesis of nanoflowers (NFs) using plant extracts is proposed for biomedical applications rather than expensive molecules such as amino acids and DNA.

8.
J Photochem Photobiol B ; 204: 111800, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32028188

RESUMO

Herein, we have reported the synthesis, characterization and catalytic activity of highly stable gold nanoparticles (Au NPs) using red cabbage extract (RCE) under UV irradiation. The anthocyanin groups predominantly existing in RCE play an essential role for biosynthesis of stable Au NPs. The reasons for using anthocyanins: 1) they act as chelating agents for preferentially reacting with gold ions (Au3+) to form Au3+- anthocyanin complexes, 2) as light-active reductants for reduction of Au3+ to zero valent Au0 under UV irradiation and 3) as stabilizing agent for preventing Au NPs from aggregation in high salt concentration owing to their unique salt tolerance property. We also demonstrate that how reaction time, concentration of RCE, pH value of reaction solutions and using one more reducing agent affected formation of the Au NPs. The stability of RCE Au NPs was comparatively studied with commercial (citrate stabilized) Au NPs against 100 mM salt (NaCl) solution. The RCE-Au NP showed reduction ability for conversion of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). UV-vis spectrometry, transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential (ZT) methods were utilized to characterize the Au NPs. We demonstrated that how whole RCE (anthocyanins molecules are major component) can be used as photo-active reducing and stabilizing agents to form Au NPs in a short time under UV irradiation and strong reducing agent without additional agents.


Assuntos
Brassica/química , Ouro/química , Nanopartículas Metálicas/química , Raios Ultravioleta , Antocianinas/química , Brassica/metabolismo , Catálise , Química Verde , Nitrofenóis/química , Oxirredução , Extratos Vegetais/química , Sais/química
9.
Sci Rep ; 9(1): 14839, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619703

RESUMO

Herein, we report the synthesis of silver nanoparticles (AgNPs) by a green route using the aqueous leaf extract of Morus indica L. V1. The synthesized AgNPs exhibited maximum UV-Vis absorbance at 460 nm due to surface plasmon resonance. The average diameter (~54 nm) of AgNPs was measured from HR-TEM analysis. EDX spectra also supported the formation of AgNPs, and negative zeta potential value (-14 mV) suggested its stability. Moreover, a shift in the carbonyl stretching (from 1639 cm-1 to 1630 cm-1) was noted in the FT-IR spectra of leaf extract after AgNPs synthesis which confirm the role of natural products present in leaves for the conversion of silver ions to AgNPs. The four bright circular rings (111), (200), (220) and (311) observed in the selected area electron diffraction pattern are the characteristic reflections of face centered cubic crystalline silver. LC-MS/MS study revealed the presence of phytochemicals in the leaf extract which is responsible for the reduction of silver ions. MTT assay was performed to investigate the cytotoxicity of AgNPs against two human cell lines, namely HepG2 and WRL-68. The antibacterial study revealed that MIC value of the synthesized AgNPs was 80 µg/ml against Escherichia coli K12 and Staphylococcus aureus (MTCC 96). Finally, the synthesized AgNPs at 10 µg/ml dosages showed beneficial effects on the survivability, body weights of the Bombyx mori L. larvae, pupae, cocoons and shells weights via enhancing the feed efficacy.


Assuntos
Antibacterianos/farmacologia , Bombyx/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Morus/química , Extratos Vegetais/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Bombyx/crescimento & desenvolvimento , Química Verde , Células Hep G2 , Humanos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Folhas de Planta/química , Prata/química
10.
Mikrobiyol Bul ; 52(1): 56-71, 2018 Jan.
Artigo em Turco | MEDLINE | ID: mdl-29642830

RESUMO

Pathogenic Acanthamoeba species often cause infection known as Acanthamoeba keratitis among people who use contact lenses. It is a type of infection that can result in corneal ulceration, visual loss or even blindness, if not treated. There are various therapeutic options available in the treatment of Acanthamoeba infections but they are usually tough treatments with limited efficacy. For instance, hydrogen peroxide (H2O2) is a commonly used contact lens disinfectant which is effective against Acanthamoeba but it is toxic to the cornea. For these reasons, new and more efficacious treatment options are required for Acanthamoeba infections. In this context, plants are considered natural resources for the discovery of new drugs. Laurocerasus officinalis Roem. (cherry laurel) (Rosaceae) grows in Black Sea region; and it is known as "Taflan", "Laz kirazi" or "Karayemis". Local people are using the seeds against diabetes, while the fruits are consuming as food, and used fordiuretic and passing kidney stones. It has also been reported that the seeds of the cherry laurel are used as an antiparasitic agent in this area. The aim of the study was to confirm the traditionally use of antiparasitic activity of this fruit and to increase the potential effect by means of organic-inorganic hybrid synthesis. Total phenol contents of methanol extracts prepared from endocarp, mesocarp and seeds of the fruit were calculated. The effects of methanol extracts and nano flower (NFs) plants synthesized from these extracts on the proliferation of Acanthamoeba castellanii were investigated. Thus, for the first time, novel organic-inorganic nanobio-antiparasitic agents called NFs were produced from cherry laurel and the increase in the amoebicidal activity of the NFs was elucidated. The characterization of NFs were determined with Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectrometer (FT-IR) and Energy-Dispersive X-ray (EDX) techniques. In addition, the catalytic activity of the fruit extracts and the NFs were measured against guaiacol in the presence of H2O2. The viability testing of A.castellanii cysts used for amoebicidal activity was performed using 4% trypan blue. Methanol extracts and nano-flowers were prepared at concentrations of 32, 16, 8, 4, 2 and 1 mg/ml in 0.9% saline and distributed 200 µl each in tubes and incubated in the room temperature with the addition of 200 µl of 98% viable A.castellani parasites. The results were evaluated using the SPSS V.22.0 program and it was determined that there was a significant increase in the amoebicidal activity of NFs compared with the other extracts according to variance analysis (p≤ 0.05). In the study, it was determined that samples killed parasites or reduced parasite proliferation at certain times. As a result, NFs synthesized from fruit extracts were demonstrated about three times more effective than the non hybrid extracts for amoebicidal activity. This situation can be explained as high proliferative effect of a new nano-bio-antiparasitic agent known as nanoflower against A.castellanii.


Assuntos
Acanthamoeba castellanii , Extratos Vegetais/farmacologia , Prunus/química , Ceratite por Acanthamoeba , Acanthamoeba castellanii/efeitos dos fármacos , Antiparasitários/química , Antiparasitários/farmacologia , Mar Negro , Frutas/química , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Adv Biochem Eng Biotechnol ; 164: 263-275, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29464309

RESUMO

The integration of nanotechnology in medicine has had a tremendous impact in the past few decades. The discovery of synthesis of nanomaterials (NMs) and their functions as versatile tools promoted various applications in nano-biotechnology and nanomedicine. Although the physical and chemical methods are still considered as commonly used methods, they introduce several drawbacks such as the use of toxic chemicals (solvent, reducing, and capping agents) and poor control of size, size distribution, and morphology, respectively. Additionally, the NMs synthesized in organic solvents and hydrophobic surfactants rapidly aggregate in aqueous solutions or under physiologic conditions, limiting their applications in medicine. Many of the phase-transfer strategies were developed and applied for the transfer of NMs into aqueous solutions. Although great efforts have been put into phase transfers, they mostly include expensive, time-consuming, intensive labor work, multi steps, and complicated procedures.Use of plant extracts in the biological synthesis method offers stark advantages over other biomolecules (protein, enzyme, peptide, and DNA). Plant extracts have been commonly used for food, medicine, NM synthesis, and biosensing. There are many viable techniques developed for the production of plant extracts with various contents based on their simplicity, cost, and the type of extract content. In this chapter, we conduct a comparative study for extract preparation techniques, the use of extracts for metallic single and hybrid nanoparticle (NP) synthesis, and their antimicrobial properties against pathogenic and plant-based bacteria. Graphical Abstract.


Assuntos
Nanotecnologia , Plantas/genética , Bactérias/efeitos dos fármacos , Nanopartículas/química , Nanotecnologia/normas , Nanotecnologia/tendências , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas/microbiologia
12.
RSC Adv ; 8(45): 25298-25303, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35539799

RESUMO

The discovery of functional organic-inorganic hybrid nanoflowers (FNFs) consisting of proteins/enzymes as the organic components and Cu(ii) ion as the inorganic component has made an enormous impact on enzyme immobilization studies. The FNFs synthesized by an encouraging and novel approach not only showed high stabilities but also much enhanced catalytic activities as compared to free and conventionally immobilized enzymes. A recent development demonstrated that FNF formation has moved beyond the initial discovery in which enzymes and Cu2+ ions used as the organic and inorganic parts, respectively, are replaced with new organic (chitosan, amino acid and plant extracts) and inorganic (Cu2+ and Fe2+) materials. The new organic materials incorporated into FNFs act as Fenton-like agents and then show peroxidase-like activity owing to the metal ions and the porous structure of FNFs in the presence of hydrogen peroxide (H2O2). All FNFs have been widely utilized in many different scientific and industrial fields due to their greatly enhanced activities and stabilities. This review focuses primarily on the preparation, characterization, and bioanalytical applications of FNFs and explains the mechanisms of their formation and enhanced activities and stabilities.

13.
J Photochem Photobiol B ; 174: 78-83, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28756155

RESUMO

Various concentrations of Matricaria chamomilla (M. chamomilla) flower extract was used for biosynthesis of Ag NPs with different sizes, 70±5 (Ag NP-1), 52±5 (Ag NP-1) and 37±4nm (Ag NP-3), and size-specific antimicrobial activity of them was evaluated towards Gram+ Staphylococcus aureus (S. aureus), Gram- Escherichia coli (E. coli) bacteria and Candida fungus albicans (C. albicans). We also examine the formation of Ag NPs as a function of the plant extract volume, Ag ion concentration (Ag+) and reaction time. M. chamomilla flower extract at 100ppm shows mild inhibitory effect by inhibiting growth of all target pathogens. The extract mediated Ag NPs even at low concentration (6.25ppm) caused reductions in cell densities of the pathogens. The potential reasons for the highly effective inhibitory activity of the extract mediated Ag NPs are: (1) synergistic effects due to combination of M. chamomile extract and Ag NP because Ag NP is an effective germicidal and M. chamomile plant itself shows mild inhibitory property, (2) high localized concentration of M. chamomile extract due to nano scale entrapment of it on surface of Ag NP and (3) size-specific antibacterial efficacy of Ag NP because small size increases the active surface area of Ag NP, which reacting bacterial cells and increases number of extract molecules anchored on the surface of Ag NP.


Assuntos
Matricaria/química , Nanopartículas Metálicas/química , Tamanho da Partícula , Extratos Vegetais/química , Prata/química , Prata/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana
14.
Enzyme Microb Technol ; 102: 60-66, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28465062

RESUMO

Herein, we report the production of novel organic-inorganic nanobio-catalytic and antimicrobial agents called "nanosnowball" (NSBs) with a rational design and elucidate the increase in the catalytic and antimicrobial activities. The NSBs resemble to guelder rose were formed of the extract of Viburnum opulus (VO) as the organic component and copper (II) ions (Cu2+) as the inorganic component. The effects of the VO extract and Cu2+ concentrations on the morphology of NSBs were systematically examined and characterized with several techniques such as SEM, FT-IR, EDX and XRD. Our results demonstrated that the presence of CuO bonds in NSBs could be indication of VO extract-Cu2+ complexes. Interestingly, the NSBs exhibited peroxidase-like activity towards guaiacol used as a model substrate depending on Fenton-like reaction. While free VO extract did not show antimicrobial activity at indicated concentration (2000-125µg/mL), the NSBs showed effective antimicrobial activity against bacterial (Escherichia coli ATCC 35218, Salmonella typhi ATCC 14028, Enterococcus faecium ATCC 8459, Enterococcus faecalis ATCC 29212, Bacillus cereus ATCC 11778, Staphylococcus aureus ATCC 25923, except Pseudomonas aeruginosa ATCC 27853 and Haemophilus influenza ATCC 49247) and fungal pathogens (Candida albicans ATCC 10231, C. glabrata ATCC 90030), respectively.


Assuntos
Anti-Infecciosos/química , Nanoestruturas/química , Viburnum/química , Bactérias/efeitos dos fármacos , Candida/efeitos dos fármacos , Catálise , Cobre/química , Desenho de Fármacos , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Nanoestruturas/ultraestrutura , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Enzyme Microb Technol ; 97: 21-26, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28010769

RESUMO

Herein, we report the biosynthesis of Ag NPs, for the first time, using identified antimicrobial molecules (gallic acid+apocynin) and (gallic acid+apocynin+quercetin) from the medicinal plant Pelargonium endlicherianum Fenzl. and dramatically enhanced antimicrobial activity. We also investigate the role of each molecule on formation Ag NPs and explain the increase in the antimicrobial activity of identified molecules mediated Ag NPs. The extraction protocols, 11% ethanol and 70% methanol, resulted in identification of different constituents of gallic acid+apocynin (M1) and gallic acid+apocynin+quercetin (M2) with respective concentrations. The M1-Ag and M2-Ag NPs exhibit excellent inhibitory activities towards Gram negative bacteria; Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Gram positive bacteria; Staphylococcus epidermidis ATCC 3699 bacterial using in vitro microdilution method. The minimum inhibitory concentration (MIC) values of M1-Ag and M2-Ag NPs were determined to be 7.81 and 6.25ppm for S. epidermidis, respectively. Surprisingly, MIC value for both Ag NPs was indicated to be identical as 9. 37ppm for P. aeruginosa and E., coli.


Assuntos
Anti-Infecciosos/farmacologia , Nanopartículas Metálicas/química , Pelargonium/química , Acetofenonas/isolamento & purificação , Acetofenonas/farmacologia , Anti-Infecciosos/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Ácido Gálico/isolamento & purificação , Ácido Gálico/farmacologia , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Nanotecnologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Plantas Medicinais/química , Pseudomonas aeruginosa/efeitos dos fármacos , Quercetina/isolamento & purificação , Quercetina/farmacologia , Prata , Staphylococcus epidermidis/efeitos dos fármacos
16.
Mater Sci Eng C Mater Biol Appl ; 60: 333-338, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26706538

RESUMO

In this study, we report the synthesis of copper oxide nanoparticles (CuO NPs) using a medicinal plant (Matricaria chamomilla) flower extract as both reducing and capping agent and investigate their antioxidant activity and interaction with plasmid DNA (pBR322).The CuO NPs were characterized using Uv-Vis spectroscopy, FT-IR (Fourier transform infrared spectroscopy), DLS (dynamic light scattering), XRD (X-ray diffraction), EDX (energy-dispersive X-ray) spectroscopy and SEM (scanning electron microscopy). The CuO NPs exhibited nearly mono-distributed and spherical shapes with diameters of 140 nm size. UV-Vis absorption spectrum of CuO NPs gave a broad peak around 285 and 320 nm. The existence of functional groups on the surface of CuO NPs was characterized with FT-IR analysis. XRD pattern showed that the NPs are in the form of a face-centered cubic crystal. Zeta potential value was measured as -20 mV due to the presence of negatively charged functional groups in plant extract. Additionally, we demonstrated concentration-dependent antioxidant activity of CuO NPs and their interaction with plasmid DNA. We assumed that the CuO NPs both cleave and break DNA double helix structure.


Assuntos
Antioxidantes/química , Camomila/química , Cobre/química , Flores/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Antioxidantes/farmacologia , Clivagem do DNA/efeitos dos fármacos , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA