Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 40(3): 428-38, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15469500

RESUMO

Dynamic networks of protein-protein interactions regulate numerous cellular processes and determine the ability to respond appropriately to environmental stimuli. However, the investigation of protein complex formation in living plant cells by methods such as fluorescence resonance energy transfer has remained experimentally difficult, time consuming and requires sophisticated technical equipment. Here, we report the implementation of a bimolecular fluorescence complementation (BiFC) technique for visualization of protein-protein interactions in plant cells. This approach relies on the formation of a fluorescent complex by two non-fluorescent fragments of the yellow fluorescent protein brought together by association of interacting proteins fused to these fragments (Hu et al., 2002). To enable BiFC analyses in plant cells, we generated different complementary sets of expression vectors, which enable protein interaction studies in transiently or stably transformed cells. These vectors were used to investigate and visualize homodimerization of the basic leucine zipper (bZIP) transcription factor bZIP63 and the zinc finger protein lesion simulating disease 1 (LSD1) from Arabidopsis as well as the dimer formation of the tobacco 14-3-3 protein T14-3c. The interaction analyses of these model proteins established the feasibility of BiFC analyses for efficient visualization of structurally distinct proteins in different cellular compartments. Our investigations revealed a remarkable signal fluorescence intensity of interacting protein complexes as well as a high reproducibility and technical simplicity of the method in different plant systems. Consequently, the BiFC approach should significantly facilitate the visualization of the subcellular sites of protein interactions under conditions that closely reflect the normal physiological environment.


Assuntos
Arabidopsis/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Espectrometria de Fluorescência/métodos , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias , Fatores de Transcrição de Zíper de Leucina Básica , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Luminescentes , Ligação Proteica , Multimerização Proteica , Sensibilidade e Especificidade , Fatores de Transcrição/metabolismo
2.
J Biol Chem ; 279(49): 50717-25, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15358770

RESUMO

The phytotoxin coronatine is a structural analog of octadecanoid signaling molecules, which are well known mediators of plant defense reactions. To isolate novel coronatine-regulated genes from Arabidopsis thaliana, differential mRNA display was performed. Transcript levels of CORI-7 (coronatine induced-7) were rapidly and transiently increased in coronatine-treated plants, and the corresponding cDNA was found to encode the sulfotransferase AtST5a. Likewise, upon wounding, an immediate and transient increase in AtST5a mRNA levels could be observed in both locally wounded and unwounded (systemic) leaves. Furthermore, application of octadecanoids and ethylene as compounds involved in plant wound defense reactions resulted in AtST5a gene activation, whereas pathogen defense-related signals (yeast elicitor and salicylic acid) were inactive. AtST5a and its close homologs AtST5b and AtST5c were purified as His6-tagged proteins from Escherichia coli. The three enzymes were shown to catalyze the final step in the biosynthesis of the glucosinolate (GS) core structure, the sulfation of desulfoglucosinolates (dsGSs). They accept a broad range of dsGSs as substrates. However, in a competitive situation, AtST5a clearly prefers tryptophan- and phenylalanine-derived dsGSs, whereas long chain dsGSs derived from methionine are the preferred substrates of AtST5b and AtST5c. Treatment of Arabidopsis plants with low concentrations of coronatine resulted in an increase in the amounts of specific GSs, primarily glucobrassicin and neoglucobrassicin. Hence, it is suggested that AtST5a is the sulfotransferase responsible for the biosynthesis of tryptophan-derived GSs in vivo.


Assuntos
Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Glucosinolatos/química , Sulfotransferases/química , Aminoácidos/química , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/química , Fenômenos Bioquímicos , Bioquímica , Northern Blotting , Catálise , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , DNA Complementar/metabolismo , Escherichia coli/metabolismo , Etilenos/química , Perfilação da Expressão Gênica , Glucosinolatos/biossíntese , Indenos/química , Indóis/química , Modelos Químicos , Filogenia , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade por Substrato , Sulfotransferases/biossíntese , Sulfotransferases/metabolismo , Fatores de Tempo , Ativação Transcricional , Triptofano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA