Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 13640, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210998

RESUMO

Euglena gracilis is widely utilized as food or supplement to promote human and animal health, as it contains rich nutrients. In this study, we administered spray-dried powder of E. gracilis and paramylon, ß-glucan stored in E. gracilis cells, to A4gnt knockout (KO) mice. A4gnt KO mice are a mutant mouse model that spontaneously develops gastric cancer through hyperplasia-dysplasia-adenocarcinoma sequence in the antrum of the stomach, and we observed the effects of E. gracilis and paramylon on the early involvements of A4gnt KO mice. Male and female 10-week-old A4gnt KO mice and their age-matched wildtype C57BL/6J mice were orally administered with 50 mg of E. gracilis or paramylon suspended in saline or saline as a control. After 3-week administration, animals were euthanatized and the stomach was examined histopathologically and immunohistochemically. Gene expression patterns of the stomach, which have been reported to be altered with A4gnt KO, and IgA concentration in small intestine were also analyzed with real-time PCR and ELISA, respectively. Administration of Euglena significantly reduced the number of stimulated CD3-positive T-lymphocytes in pyloric mucosa of A4gnt KO mice and tend to reduce polymorphonuclear leukocytes infiltration. Euglena administration further downregulated the expression of Il11 and Cxcl1 of A4gnt KO mice. Euglena administration also affected IgA concentration in small intestinal contents of A4gnt KO mice. Paramylon administration reduced the number of CD3-positive lymphocytes in pyloric mucosa of A4gnt KO mice, and downregulated the expressions of Il11 and Ccl2 of A4gnt KO mice. Although we found no significant effects on gross and microscopic signs of gastric dysplasia and cell proliferation, the present study suggests that the administration of Euglena and paramylon may ameliorate the early involvements of A4gnt mice through the effects on inflammatory reactions in the gastric mucosa. The cancer-preventing effects should be studied with long-term experiments until actual gastric cancer formation.


Assuntos
Anticarcinógenos/uso terapêutico , Euglena gracilis , Glucanos/uso terapêutico , N-Acetilglucosaminiltransferases/genética , Neoplasias Gástricas/prevenção & controle , Administração Oral , Animais , Anticarcinógenos/administração & dosagem , Anticarcinógenos/análise , Suplementos Nutricionais/análise , Euglena gracilis/química , Feminino , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Glucanos/administração & dosagem , Glucanos/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
2.
Chem Biol Interact ; 215: 46-53, 2014 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-24661947

RESUMO

To develop a non-toxic enhancer for hyperthermia-induced cell death as a potential cancer treatment, we studied the effect and mechanism of docosahexaenoic acid (DHA) on hyperthermia-induced apoptosis. Treatment with 20µM DHA and 44°C for 10min induced significant apoptosis, increased intracellular reactive oxygen species (ROS), and caspase-3 activation in U937 cells, but heat or DHA alone did not induce notable apoptosis. Decreased mitochondrial transmembrane potentials were dramatically increased by the combined treatment, accompanied by increased pro-apoptotic Bcl-2 family protein tBid, and decreased anti-apoptotic Bcl-2 and Bcl-xL. Combined hyperthermia-DHA treatment induced significant phosphorylation of protein kinase C (PKC)-δ (p-PKC-δ), and apoptosis in a DHA dose-dependent manner. Using both 20µM DHA and 44°C for 10min induced significant PKC-δ cleavage and its translocation to mitochondria. These results were also seen in HeLa cells. However, MAPKs and Akt were not affected by the treatment. In conclusion, DHA enhances hyperthermia-induced apoptosis significantly via a mitochondria-caspase-dependent pathway; its underlying mechanism involves elevated intracellular ROS, mitochondria dysfunction, and PKC-δ activation.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Hipertermia Induzida , Linhagem Celular Tumoral , Ácidos Docosa-Hexaenoicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Eur J Pharmacol ; 723: 99-107, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24321857

RESUMO

Hyperthermia is a good therapeutic tool for non-invasive cancer therapy; however, its cytotoxic effects are not sufficient. In the present study, withaferin A (WA), a steroidal lactone derived from the plant Withania somnifera Dunal, has been investigated for its possible enhancing effects on hyperthermia-induced apoptosis. In HeLa cells, treatment with 0.5 or 1.0µM WA at 44°C for 30min induced significant apoptosis accompanied by decreased intracellular GSH/GSSG ratio and caspase-3 activation, while heat or WA alone did not induce such changes. The upregulation in apoptosis was significantly inhibited by glutathione monoethyl ester, a cell permeable glutathione precursor. Mitochondrial transmembrane potentials were dramatically decreased by the combined treatment, with increases in pro-apoptotic Bcl-2-family proteins tBid and Noxa, and downregulation of antiapoptotic Bcl-2 and Mcl-1. Combined treatment with hyperthermia and WA induced significant increases in JNK phosphorylation (p-JNK), and decreases in the phosphorylation of ERK (p-ERK) compared with either treatment alone. These results suggest that WA enhances hyperthermia-induced apoptosis via a mitochondria-caspase-dependent pathway; its underlying mechanism involves elevated intracellular oxidative stress, mitochondria dysfunction, and JNK activation.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Hipertermia Induzida , Vitanolídeos/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
J Biol Chem ; 277(21): 18986-93, 2002 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-11861640

RESUMO

The combined effects of hyperthermia at 44 degrees C and local anesthetics on apoptosis in human histiocytic lymphoma U937 cells were investigated. When the cells were exposed to hyperthermia for l0 min marginal DNA fragmentation and nuclear fragmentation were observed. In the presence of amide-type local anesthetics further enhancement was found depending on concentration. The order of the concentration required for maximum induction was the reverse order of the lipophilicity (prilocaine > lidocaine > bupivacaine). Western blotting revealed that in hyperthermia there was initial release of Ca(2+) from the intracellular store site as indicated by increased expression of the type 1 inositol-1,4,5-trisphosphate receptor. However, the combination with lidocaine did not induce any further enhancement. Lidocaine enhanced the decrease in ATP content and the increase in intracellular Ca(2+) concentration in individual cells induced by hyperthermia. In addition, superoxide formation, decrease in the mitochondrial membrane potential, and activation of intracellular caspase-3 were found in the cells treated with hyperthermia and lidocaine. All of these were suppressed in part in the presence of the intracellular Ca(2+) ion chelator BAPTA-AM (bis-(O-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl). The present results indicate that local anesthetics at optimal concentrations enhance hyperthermia-induced apoptosis via Ca(2+)- and mitochondria-dependent pathways. Initial release of Ca(2+) from intracellular store sites caused by hyperthermia and followed by the subsequent increase in the intracellular Ca(2+) concentration and the additional activation of the mitochondrial caspase-dependent pathway (partly regulated by intracellular Ca(2+) concentration) plays a crucial role in the enhancement of apoptosis induced by the combination of hyperthermia and lidocaine.


Assuntos
Anestésicos Locais/farmacologia , Apoptose , Ácido Egtázico/análogos & derivados , Hipertermia Induzida , Linfoma Difuso de Grandes Células B/patologia , Apoptose/efeitos dos fármacos , Western Blotting , Cálcio/metabolismo , Caspases/metabolismo , Ácido Egtázico/farmacologia , Citometria de Fluxo , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Mitocôndrias/enzimologia , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA