Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sports Med ; 52(5): 971-993, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34905181

RESUMO

Basketball players face multiple challenges to in-season recovery. The purpose of this article is to review the literature on recovery modalities and nutritional strategies for basketball players and practical applications that can be incorporated throughout the season at various levels of competition. Sleep, protein, carbohydrate, and fluids should be the foundational components emphasized throughout the season for home and away games to promote recovery. Travel, whether by air or bus, poses nutritional and sleep challenges, therefore teams should be strategic about packing snacks and fluid options while on the road. Practitioners should also plan for meals at hotels and during air travel for their players. Basketball players should aim for a minimum of 8 h of sleep per night and be encouraged to get extra sleep during congested schedules since back-to back games, high workloads, and travel may negatively influence night-time sleep. Regular sleep monitoring, education, and feedback may aid in optimizing sleep in basketball players. In addition, incorporating consistent training times may be beneficial to reduce bed and wake time variability. Hydrotherapy, compression garments, and massage may also provide an effective recovery modality to incorporate post-competition. Future research, however, is warranted to understand the influence these modalities have on enhancing recovery in basketball players. Overall, a strategic well-rounded approach, encompassing both nutrition and recovery modality strategies, should be carefully considered and implemented with teams to support basketball players' recovery for training and competition throughout the season.


Assuntos
Basquetebol , Humanos , Massagem , Estações do Ano , Sono , Carga de Trabalho
2.
Geroscience ; 43(5): 2485-2495, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34283389

RESUMO

Skeletal muscle mass losses with age are associated with negative health consequences, including an increased risk of developing metabolic disease and the loss of independence. Athletes adopt numerous nutritional strategies to maximize the benefits of exercise training and enhance recovery in pursuit of improving skeletal muscle quality, mass, or function. Importantly, many of the principles applied to enhance skeletal muscle health in athletes may be applicable to support active aging and prevent sarcopenia in the healthy (non-clinical) aging population. Here, we discuss the anabolic properties of protein supplementation in addition to ingredients that may enhance the anabolic effects of protein (e.g. omega 3 s, creatine, inorganic nitrate) in older persons. We conclude that nutritional strategies used in pursuit of performance enhancement in athletes are often applicable to improve skeletal muscle health in the healthy older population when implemented as part of a healthy active lifestyle. Further research is required to elucidate the mechanisms by which these nutrients may induce favourable changes in skeletal muscle and to determine the appropriate dosing and timing of nutrient intakes to support active aging.


Assuntos
Sarcopenia , Ciências da Nutrição e do Esporte , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Atletas , Suplementos Nutricionais , Humanos , Sarcopenia/prevenção & controle
3.
Int J Sport Nutr Exerc Metab ; 30(3): 197-202, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32698123

RESUMO

We tested the hypothesis that presleep consumption of α-lactalbumin (LA), a fraction of whey with a high abundance of tryptophan, would improve indices of sleep quality and time-trial (TT) performance in cyclists relative to an isonitrogenous collagen peptide (CP) supplement lacking tryptophan. Using randomized, double-blind, crossover designs, cyclists consumed either 40 g of LA or CP 2 hr prior to sleep. In Study 1, six elite male endurance track cyclists (age 23 ± 6 years, V˙O2peak 70.2 ± 4.4 ml·kg-1·min-1) consumed a supplement for three consecutive evenings before each 4-km TT on a velodrome track, whereas in Study 2, six well-trained cyclists (one female; age 24 ± 5 years, V˙O2peak 66.9 ± 8.3 ml·kg-1·min-1) consumed a supplement the evening before each 4-km TT on a stationary cycle ergometer. Indices of sleep quality were assessed with wrist-based actigraphy. There were no differences between the CP and LA supplements in terms of total time in bed, total sleep time, or sleep efficiency in Study 1 (LA: 568 ± 71 min, 503 ± 67 min, 88.3% ± 3.4%; CP: 546 ± 30 min, 479 ± 35 min, 87.8% ± 3.1%; p = .41, p = .32, p = .74, respectively) or Study 2 (LA: 519 ± 90 min, 450 ± 78 min, 87.2% ± 7.6%; CP: 536 ± 62 min, 467 ± 57 min, 87.3% ± 6.4%; p = .43, p = .44, p = .97, respectively). Similarly, time to complete the 4-km TT was unaffected by supplementation in Study 1 (LA: 274.9 ± 7.6 s; CP: 275.5 ± 7.2 s; p = .62) and Study 2 (LA: 344.3 ± 22.3 s; CP: 343.3 ± 23.0 s; p = .50). Thus, relative to CP, consuming LA 2 hr prior to sleep over 1-3 days did not improve actigraphy-based indices of sleep quality or 4-km TT performance in cyclists.


Assuntos
Desempenho Atlético , Ciclismo , Suplementos Nutricionais , Lactalbumina/administração & dosagem , Sono , Actigrafia , Adolescente , Adulto , Estudos Cross-Over , Método Duplo-Cego , Teste de Esforço , Feminino , Humanos , Masculino , Consumo de Oxigênio , Adulto Jovem
4.
Nutrients ; 12(5)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349353

RESUMO

Skeletal muscle myofibrillar protein synthesis (MPS) increases in response to protein feeding and to resistance exercise (RE), where each stimuli acts synergistically when combined. The efficacy of plant proteins such as potato protein (PP) isolate to stimulate MPS is unknown. We aimed to determine the effects of PP ingestion on daily MPS with and without RE in healthy women. In a single blind, parallel-group design, 24 young women (21 ± 3 years, n = 12/group) consumed a weight-maintaining baseline diet containing 0.8 g/kg/d of protein before being randomized to consume either 25 g of PP twice daily (1.6 g/kg/d total protein) or a control diet (CON) (0.8 g/kg/d total protein) for 2 wks. Unilateral RE (~30% of maximal strength to failure) was performed thrice weekly with the opposite limb serving as a non-exercised control (Rest). MPS was measured by deuterated water ingestion at baseline, following supplementation (Rest), and following supplementation + RE (Exercise). Ingestion of PP stimulated MPS by 0.14 ± 0.09 %/d at Rest, and by 0.32 ± 0.14 %/d in the Exercise limb. MPS was significantly elevated by 0.20 ± 0.11 %/d in the Exercise limb in CON (P = 0.008). Consuming PP to increase protein intake to levels twice the recommended dietary allowance for protein augmented rates of MPS. Performance of RE stimulated MPS regardless of protein intake. PP is a high-quality, plant-based protein supplement that augments MPS at rest and following RE in healthy young women.


Assuntos
Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Exercício Físico/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Fenômenos Fisiológicos da Nutrição/fisiologia , Proteínas de Plantas/administração & dosagem , Treinamento Resistido , Descanso/fisiologia , Solanum tuberosum/química , Adolescente , Adulto , Extremidades , Feminino , Humanos , Recomendações Nutricionais , Adulto Jovem
5.
Am J Clin Nutr ; 111(3): 708-718, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919527

RESUMO

BACKGROUND: Aging appears to attenuate the response of skeletal muscle protein synthesis (MPS) to anabolic stimuli such as protein ingestion (and the ensuing hyperaminoacidemia) and resistance exercise (RE). OBJECTIVES: The purpose of this study was to determine the effects of protein quality on feeding- and feeding plus RE-induced increases of acute and longer-term MPS after ingestion of whey protein (WP) and collagen protein (CP). METHODS: In a double-blind parallel-group design, 22 healthy older women (mean ± SD age: 69 ± 3 y, n = 11/group) were randomly assigned to consume a 30-g supplement of either WP or CP twice daily for 6 d. Participants performed unilateral RE twice during the 6-d period to determine the acute (via [13C6]-phenylalanine infusion) and longer-term (ingestion of deuterated water) MPS responses, the primary outcome measures. RESULTS: Acutely, WP increased MPS by a mean ± SD 0.017 ± 0.008%/h in the feeding-only leg (Rest) and 0.032 ± 0.012%/h in the feeding plus exercise leg (Exercise) (both P < 0.01), whereas CP increased MPS only in Exercise (0.012 ± 0.013%/h) (P < 0.01) and MPS was greater in WP than CP in both the Rest and Exercise legs (P = 0.02). Longer-term MPS increased by 0.063 ± 0.059%/d in Rest and 0.173 ± 0.104%/d in Exercise (P < 0.0001) with WP; however, MPS was not significantly elevated above baseline in Rest (0.011 ± 0.042%/d) or Exercise (0.020 ± 0.034%/d) with CP. Longer-term MPS was greater in WP than in CP in both Rest and Exercise (P < 0.001). CONCLUSIONS: Supplementation with WP elicited greater increases in both acute and longer-term MPS than CP supplementation, which is suggestive that WP is a more effective supplement to support skeletal muscle retention in older women than CP.This trial was registered at clinicaltrials.gov as NCT03281434.


Assuntos
Colágeno/metabolismo , Proteínas Musculares/metabolismo , Peptídeos/metabolismo , Biossíntese de Proteínas , Treinamento Resistido , Proteínas do Soro do Leite/metabolismo , Idoso , Colágeno/química , Suplementos Nutricionais/análise , Método Duplo-Cego , Feminino , Humanos , Proteínas Musculares/genética , Músculo Esquelético/metabolismo
6.
Med Sci Sports Exerc ; 52(6): 1394-1403, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31895298

RESUMO

INTRODUCTION: Protein ingestion and the ensuing hyperaminoacidemia stimulates skeletal muscle protein synthesis in the postexercise period. This response facilitates muscle remodeling, which is important during intensified training. The aim of this study was to determine whether supplementation with α-lactalbumin (LA), with high leucine and tryptophan contents, would improve responses to short periods of intensified aerobic training compared with supplementation with an isonitrogenous quantity of collagen peptides (CP). METHODS: Endurance-trained participants (5 male, 6 female, 24 ± 4 yr, V˙O2 = 53.2 ± 9.1 mL·kg·min, peak power output = 320 ± 48 W; means ± SD) consumed a controlled diet (1.0 g·kg·d protein) and refrained from habitual training for 11 d while taking part in this double-blind randomized, crossover trial. The two intervention phases, which consisted of brief intensified training (4 × 4-min cycling intervals at 70% of peak power output on 3 consecutive days) combined with the ingestion of LA or CP supplements after exercise (20 g) and before sleep (40 g), were separated by 4 d of washout without protein supplementation (i.e., the control phase). In response to each phase, myofibrillar (MyoPS), sarcoplasmic protein synthesis (SarcPS) rates (via H2O ingestion) and parameters of sleep quality were measured. RESULTS: LA ingestion increased plasma leucine (P < 0.001) and tryptophan concentrations (P < 0.001) relative to CP. Intensified training increased MyoPS and SarcPS above the washout phase in LA- and CP-supplemented phases (P < 0.01), with increases being 13% ± 5% and 5% ± 7% greater with LA than CP for MyoPS (P < 0.01) and SarcPS, respectively (P < 0.01). CONCLUSIONS: Despite an isonitrogenous diet, protein synthesis was enhanced to a greater extent when trained participants consumed LA compared with CP during intensified aerobic training, suggesting that protein quality is an important consideration for endurance-trained athletes aiming to augment adaption to exercise training.


Assuntos
Colágeno/administração & dosagem , Suplementos Nutricionais , Exercício Físico/fisiologia , Lactalbumina/administração & dosagem , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Humano/fisiologia , Disponibilidade Biológica , Feminino , Humanos , Leucina/administração & dosagem , Leucina/sangue , Masculino , Miofibrilas/metabolismo , Retículo Sarcoplasmático/metabolismo , Sono/fisiologia , Triptofano/administração & dosagem , Triptofano/sangue , Adulto Jovem
7.
Am J Clin Nutr ; 108(5): 1060-1068, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30289425

RESUMO

Background: In older persons, muscle loss is accelerated during physical inactivity and hypoenergetic states, both of which are features of hospitalization. Protein supplementation may represent a strategy to offset the loss of muscle during inactivity, and enhance recovery on resumption of activity. Objective: We aimed to determine if protein supplementation, with proteins of substantially different quality, would alleviate the loss of lean mass by augmenting muscle protein synthesis (MPS) while inactive during a hypoenergetic state. Design: Participants (16 men, mean ± SD age: 69 ± 3 y; 15 women, mean ± SD age: 68 ± 4 y) consumed a diet containing 1.6 g protein · kg-1 · d-1, with 55% ± 9% of protein from foods and 45% ± 9% from supplements, namely, whey protein (WP) or collagen peptides (CP): 30 g each, consumed 2 times/d. Participants were in energy balance (EB) for 1 wk, then began a period of energy restriction (ER; -500 kcal/d) for 1 wk, followed by ER with step reduction (ER + SR; <750 steps/d) for 2 wk, before a return to habitual activity in recovery (RC) for 1 wk. Results: There were significant reductions in leg lean mass (LLM) from EB to ER, and from ER to ER + SR in both groups (P < 0.001) with no differences between WP and CP or when comparing the change from phase to phase. During RC, LLM increased from ER + SR, but in the WP group only. Rates of integrated muscle protein synthesis decreased during ER and ER + SR in both groups (P < 0.01), but increased during RC only in the WP group (P = 0.05). Conclusions: Protein supplementation did not confer a benefit in protecting LLM, but only supplemental WP augmented LLM and muscle protein synthesis during recovery from inactivity and a hypoenergetic state. This trial was registered at http://www.clinicaltrials.gov as NCT03285737.


Assuntos
Suplementos Nutricionais , Ingestão de Energia , Atividade Motora , Proteínas Musculares/biossíntese , Músculo Esquelético/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas do Soro do Leite/farmacologia , Idoso , Restrição Calórica , Colágeno/farmacologia , Convalescença , Metabolismo Energético , Feminino , Hospitalização , Humanos , Perna (Membro) , Masculino , Músculo Esquelético/metabolismo , Peptídeos/farmacologia , Descanso , Caminhada
8.
Int J Sports Physiol Perform ; 11(5): 658-63, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26562930

RESUMO

PURPOSE: Self-myofascial release (SMR) is a common exercise and therapeutic modality shown to induce acute improvements in joint range of motion (ROM) and recovery; however, no long-term studies have been conducted. Static stretching (SS) is the most common method used to increase joint ROM and decrease muscle stiffness. It was hypothesized that SMR paired with SS (SMR+SS) compared with SS alone over a 4-wk intervention would yield greater improvement in knee-extension ROM and hamstring stiffness. METHODS: 19 men (22 ± 3 y) with bilateral reduced hamstring ROM had each of their legs randomly assigned to either an SMR+SS or an SS-only group. The intervention consisted of 4 repetitions of SS each for 45 s or the identical amount of SS preceded by 4 repetitions of SMR each for 60 s and was performed on the respective leg twice daily for 4 wk. Passive ROM, hamstring stiffness, rate of torque development (RTD), and maximum voluntary contraction (MVC) were assessed pre- and postintervention. RESULTS: Passive ROM (P < .001), RTD, and MVC (P < .05) all increased after the intervention. Hamstring stiffness toward end-ROM was reduced postintervention (P = .02). There were no differences between the intervention groups for any variable. CONCLUSION: The addition of SMR to SS did not enhance the efficacy of SS alone. SS increases joint ROM through a combination of decreased muscle stiffness and increased stretch tolerance.


Assuntos
Músculos Isquiossurais/fisiologia , Articulação do Joelho/fisiologia , Exercícios de Alongamento Muscular/métodos , Amplitude de Movimento Articular/fisiologia , Humanos , Masculino , Contração Muscular/fisiologia , Distribuição Aleatória , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA